【題目】(2015·四川)已知函數(shù)f(x)=2x , g(x)=x2+ax(其中aR).對(duì)于不相等的實(shí)數(shù)x1, x2 , 設(shè)m=,n=.
現(xiàn)有如下命題:
(1)對(duì)于任意不相等的實(shí)數(shù)x1, x2 , 都有m>0;
(2)對(duì)于任意的a及任意不相等的實(shí)數(shù)x1, x2 , ,都有n>0;
(3)對(duì)于任意的a , 存在不相等的實(shí)數(shù)x1, x2 , 使得m=n;
(4)對(duì)于任意的a , 存在不相等的實(shí)數(shù)x1, x2 , 使得m=-n.
其中的真命題有 (寫(xiě)出所有真命題的序號(hào)).

【答案】(1)(4)
【解析】設(shè)A(x1, f(x1)), B(x2, f(x2)), C(x1, g(x1)), D(x2, g(x2)), 對(duì)(1), 從y=2x的圖像可看出, m=KAB>0,恒成立, 故正確。對(duì)(2), 直線(xiàn)CD的斜率可為負(fù), 即n<0, 故不正確。對(duì)(3),由m=n得f(x1)-f(x2)=g(x1)-g(x2), 即f(x1)-g(x1)=f(x2))-g(x2), 令h(x)=f(x)-g(x)=2x-x2-ax. 則h'(x)=2xln2-2x-a. 由 h'(x)=0得, 2xln2=2x+a, 做出y=2xln2, y=2x+a的圖像可知, 方程2xln2=2x+a不一定有解, 所以h(x)不一定有極值點(diǎn), 即對(duì)任意的a,不一定存在不相等的實(shí)數(shù)x1, x2,使得h(x1)=h(x2),即不一定存在不相等得實(shí)數(shù)x1, x2使得m=n,故不正確。
對(duì)(4),由m=-n得f(x1)-g(x1)=f(x2))-g(x2), 即f(x1)+g(x1)=f(x2))+g(x2), 令h(x)=f(x)+g(x)=2x+x2+ax. 則h'(x)=2xln2+2x+a.
h'(x)=0得, 2xln2=-2x-a, 做出y=2xln2, y=-2x-a的圖像可知, 方程2xln2=-2x-a一定有解, 所以h(x)一定有極值點(diǎn), 即對(duì)任意的a,一定存在不相等的實(shí)數(shù)x1, x2,使得h(x1)=h(x2),即一定存在不相等得實(shí)數(shù)x1, x2使得m=n,故不正確。
四川高考數(shù)學(xué)15題歷來(lái)是一個(gè)異彩紛呈的題,個(gè)中精彩讀者可從解析中慢慢體會(huì).解決本題的關(guān)鍵是轉(zhuǎn)化思想,通過(guò)轉(zhuǎn)化使問(wèn)題得以解決.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)= 與g(x)=a2lnx+b有公共點(diǎn),且在公共點(diǎn)處的切線(xiàn)方程相同,則實(shí)數(shù)b的最大值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)用“五點(diǎn)法”畫(huà)函數(shù)在某一周期內(nèi)的圖像時(shí),列表并填入的部分?jǐn)?shù)據(jù)如下表:

0

0

1

0

0

0

0

0

(1)請(qǐng)寫(xiě)出上表的及函數(shù)的解析式;

(2)將函數(shù)的圖像向右平移個(gè)單位,再將所得圖像上各點(diǎn)的橫坐標(biāo)縮小為原來(lái)的,縱坐標(biāo)不變,得到函數(shù)的圖像,求的解析式及的單調(diào)遞增區(qū)間;

(3)(2)的條件下,若上恰有奇數(shù)個(gè)零點(diǎn),求實(shí)數(shù)與零點(diǎn)個(gè)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·新課標(biāo)I卷)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線(xiàn)C1: x=-2,圓C2:(x-1)2+(y+2)2=1,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求C1, C2的極坐標(biāo)方程.
(2)若直線(xiàn)C3的極坐標(biāo)方程為,設(shè)C2, C3的交點(diǎn)為M,N,求△C2MN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)C1:x2=4y 的焦點(diǎn)F也是橢圓c2:的一個(gè)焦點(diǎn), C1和C2的公共弦長(zhǎng)為
(1)求 C2的方程;
(2)過(guò)點(diǎn)F 的直線(xiàn) l與 C1相交于A與B兩點(diǎn), 與C2相交于C , D兩點(diǎn),且 同向
(ⅰ)若 求直線(xiàn)l的斜率;
(ⅱ)設(shè) C1在點(diǎn) A處的切線(xiàn)與 x軸的交點(diǎn)為M ,證明:直線(xiàn)l 繞點(diǎn) F旋轉(zhuǎn)時(shí), MFD總是鈍角三角形。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·四川)如圖,橢圓E:的離心率是,點(diǎn)P(0,1)在短軸CD上, 且.

(1)求橢圓E的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)P的動(dòng)直線(xiàn)與橢圓交于A、B兩點(diǎn).是否存在常數(shù)λ , 使得為定值?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·四川)某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦3名男生,2名女生,B中學(xué)推薦了3名男生,4名女生,兩校推薦的學(xué)生一起參加集訓(xùn),由于集訓(xùn)后隊(duì)員的水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人,女生中隨機(jī)抽取3人組成代表隊(duì)。
(1)求A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率.
(2)某場(chǎng)比賽前,從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X得分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·陜西)如圖,橢圓E:(a>b>0)經(jīng)過(guò)點(diǎn)A(0,-1),且離心率為.

(1)求橢圓E的方程;
(2)經(jīng)過(guò)點(diǎn)(1,1),且斜率為k的直線(xiàn)與橢圓E交于不同兩點(diǎn)P,Q(均異于點(diǎn)A),證明:直線(xiàn)AP與AQ的斜率之和為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2015·湖北)一種作圖工具如圖1所示.O是滑槽AB的中點(diǎn),短桿ON可繞O轉(zhuǎn)動(dòng),長(zhǎng)桿MN通過(guò)N處鉸鏈與ON連接,MN上的栓子D可沿滑槽AB滑動(dòng),且,.當(dāng)栓子D在滑槽AB內(nèi)作往復(fù)運(yùn)動(dòng)時(shí),帶動(dòng)N繞O轉(zhuǎn)動(dòng)一周(D不動(dòng)時(shí),N也不動(dòng)),M處的筆尖畫(huà)出的曲線(xiàn)記為C.以O(shè)為原點(diǎn),AB所在的直線(xiàn)為軸建立如圖2所示的平面直角坐標(biāo)系.
(1)求曲線(xiàn)C的方程;
(2)設(shè)動(dòng)直線(xiàn)與兩定直線(xiàn)分別交于兩點(diǎn).若直線(xiàn)總與曲線(xiàn)C有且只有一個(gè)公共點(diǎn),試探究:的面積是否存在最小值?若存在,求出該最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案