2.已知f(x)=log2(x-2),若實(shí)數(shù)m,n滿足f(m)+f(n)=3,則m+n的最小值為( 。
A.5B.7C.4+4$\sqrt{2}$D.9

分析 根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)和基本不等式即可求出答案.

解答 解:∵f(x)=log2(x-2),若實(shí)數(shù)m,n滿足f(m)+f(n)=3,
∴l(xiāng)og2(m-2)+log2(n-2)=3,
即log2(m-2)(n-2)=log28,
∴(m-2)(n-2)=8,m>2,n>2,
∴m+n=(m-2)+(n-2)+4≥4+2$\sqrt{(m-2)(n-2)}$=4+2$\sqrt{8}$=4+4$\sqrt{2}$,
故選:C.

點(diǎn)評(píng) 本題考查了基本不等式,考查了利用基本不等式求最值,考查了對(duì)數(shù)函數(shù)的性質(zhì),利用了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知命題p:?x0∈[0,2],log2(x0+2)<2m;命題q:向量$\overrightarrow a=(1,m)$與向量$\overrightarrow b=(1,-3m)$的夾角為銳角.
(I)若命題q為真命題,求實(shí)數(shù)m的取值范圍;
(II)若(¬p)∧q為真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知:空間四邊形ABCD如圖所示,E、F分別是AB、AD的中點(diǎn),G、H分別是BC,CD上的點(diǎn),且$CG=\frac{1}{3}BC$.$CH=\frac{1}{3}DC$,則直線FH與直線EG( 。
A.平行B.相交C.異面D.垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$若關(guān)于x的方程f(x)=k有兩個(gè)不等的實(shí)根,則實(shí)數(shù)k的取值范圍是(  )
A.(0,+∞)B.(-∞,1)C.(0,1]D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.命題“a>-5,則a>-8”以及它的逆命題、否命題、逆否命題,真命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}的前n項(xiàng)和為Sn,且${S_n}=\frac{n^2}{2}+\frac{3n}{2}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足${b_n}={a_{n+1}}-{a_n}+\frac{1}{{{a_{n+2}}•{a_n}}}$,且數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<2n+$\frac{5}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知向量$\overrightarrow{a}$=(2cosφ,2sinφ),φ∈($\frac{π}{2}$,π),$\overrightarrow$=(0,-1),則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.$\frac{3π}{2}$-φB.$\frac{π}{2}$+φC.φ-$\frac{π}{2}$D.φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.給出以下四個(gè)命題:
(1)如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行,
(2)如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面
(3)如果一個(gè)平面內(nèi)的無(wú)數(shù)條直線都平行于另一個(gè)平面,那么這兩個(gè)平面互相平行
(4)如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,則這兩個(gè)平面垂直
其中正確的命題個(gè)數(shù)有(  )個(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)是否存在實(shí)數(shù)a,使得函數(shù)f(x)的極值大于0?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案