函數(shù)y=2cosx(sinx-cosx),x∈[
π
8
,
4
]的值域是
 
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的求值
分析:由三角函數(shù)公式化簡可得y=
2
sin(2x-
π
4
)-1,由x∈[
π
8
,
4
]和三角函數(shù)的性質(zhì)逐步求范圍可得.
解答: 解:化簡可得y=2cosx(sinx-cosx)
=2sinxcosx-2cos2x=sin2x-cos2x-1
=
2
sin(2x-
π
4
)-1,
∵x∈[
π
8
,
4
],∴2x-
π
4
∈[0,
4
],
∴sin(2x-
π
4
)∈[-
2
2
,1],
2
sin(2x-
π
4
)-1∈[-2,
2
-1],
故答案為:[-2,
2
-1],
點(diǎn)評(píng):本題考查三角函數(shù)的值域,涉及三角函數(shù)的化簡,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
,
e2
是兩個(gè)不共線的向量,若向量
m
=-
e1
+k
e2
(k∈R)與向量
n
=
e2
-2
e1
共線,則( 。
A、k=0B、k=1
C、k=2D、k=0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
2sin(3x+
π
4
)-1
的單調(diào)遞減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,用作商法比較x2+3x+2與x+2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
sinx-1
cosx-2
的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an=
2
S
2
n
2Sn-1
(n≥2).
(1)求證:數(shù)列{
1
Sn
}為等差數(shù)列;
(2)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα-cosα=
1
3
,則tanα+
1
tanα
=( 。
A、
8
9
B、
7
3
C、
9
4
D、
11
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在棱長均相等的正三棱柱ABC-A1B1C1中,D為BC的中點(diǎn).
(1)求證:A1B∥平面AC1D;
(2)求C1C與平面AC1D所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD,底面是邊長為a的正方形,PD⊥底面ABCD,PD=DC,E、F分別是AB、PB的中點(diǎn),
(1)PB與CD所成的角的正弦值;
(2)DB與平面DEF所成的面的余弦值;
(3)點(diǎn)B到平面DEF的距離;
(4)二面角F-DE-B的大小的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案