18.已知圓C過(guò)點(diǎn)O(0,0),和點(diǎn)T(1,3),且圓心在直線n:x-2y=0上,直線l:x+my-2m-1=0,m∈R,
(1)若直線n與直線l平行,求這兩條平行線間的距離;
(2)求圓C的方程;
(3)設(shè)直線l恒過(guò)定點(diǎn)A,求點(diǎn)A的坐標(biāo)并判斷點(diǎn)A與圓C的位置關(guān)系.

分析 (1)求出m,利用兩條平行線間的距離公式,求這兩條平行線間的距離;
(2)設(shè)圓心坐標(biāo)為(2a,a),利用兩點(diǎn)間的距離公式,建立方程,求出圓心與半徑,即可求圓C的方程;
(3)直線l:x+my-2m-1=0,即m(y-2)+(x-1)=0,可得直線l恒過(guò)定點(diǎn)A的坐標(biāo),再判斷點(diǎn)A與圓C的位置關(guān)系.

解答 解:(1)由題意,m=-2,直線l:x-2y+3=0,
∴兩條平行線間的距離d=$\frac{3}{\sqrt{1+4}}$=$\frac{3\sqrt{5}}{5}$;
(2)設(shè)圓心坐標(biāo)為(2a,a),
則4a2+a2=(2a-1)2+(a-3)2,∴a=1,r=$\sqrt{5}$,
∴圓C的方程(x-2)2+(y-1)2=5;
(3)直線l:x+my-2m-1=0,即m(y-2)+(x-1)=0,∴直線l恒過(guò)定點(diǎn)A(1,2),
∵(1-2)2+(2-1)2<5,
∴A在圓C的內(nèi)部.

點(diǎn)評(píng) 本題考查直線與圓的方程,考查直線過(guò)定點(diǎn),考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知某離散型隨機(jī)變量X的分布列如表格,則m=$\frac{7}{12}$.
X123
P$\frac{1}{6}$$\frac{1}{4}$m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a=$\sqrt{2}$,b=2,sinB+cosB=$\sqrt{2}$.
(1)求角A的大;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,1),則$\overrightarrow{a}$在$\overrightarrow$方向上的正射影的數(shù)量為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.某地一天中6時(shí)至14時(shí)的溫度變化曲線近似滿足函數(shù)T=Asin(ωt+φ)+b(其中$\frac{π}{2}$<φ<π),6時(shí)至14時(shí)期間的溫度變化曲線如圖所示,它是上述函數(shù)的半個(gè)周期的圖象,那么這一天6時(shí)至14時(shí)溫差的最大值是20°C;圖中曲線對(duì)應(yīng)的函數(shù)解析式是y=10sin($\frac{π}{8}$x+$\frac{3π}{4}$)+20,x∈[6,14].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知命題p:?x∈R,使得x2-x+2<0;命題函數(shù)f(x)=$\frac{4}{x}$-log3x在區(qū)間(3,4)內(nèi)沒(méi)有零點(diǎn).下列命題為真命題的是( 。
A.(¬p)∧(¬q)B.p∧qC.(¬p)∧p)D.(p)∨q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=x2-cosx,則f(-0.5),f(0),f(0.6)這三個(gè)函數(shù)值從小到大分別為f(0.6)>f(-0.5)>f(0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知一批10000只白熾燈泡的光通量X~N(200,100),則這批燈泡中光通量X>220個(gè)數(shù)大約為( 。
(參考數(shù)據(jù):若X:N(μ,2),則X在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)內(nèi)的概率分別為68.3%,95.4%,99.7% )
A.230B.460C.4770D.9540

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知二次函數(shù)f(x)=x2-2x,求函數(shù)y=f(x)在下列區(qū)間上的值域:
(1)x∈R;(2)x∈[-1,0];
(3)x∈[2,4];(4)x∈[-1,4].

查看答案和解析>>

同步練習(xí)冊(cè)答案