10.在銳角△ABC中,sinA=$\frac{2\sqrt{6}}{5}$,cosC=$\frac{5}{7}$,BC=7,若動點P滿足$\overrightarrow{AP}$=$\frac{λ}{2}$$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$(λ∈R),則點P軌跡與直線AB,AC所圍成的封閉區(qū)域的面積( 。
A.3$\sqrt{6}$B.4$\sqrt{6}$C.6$\sqrt{6}$D.12$\sqrt{6}$

分析 根據(jù)向量加法的幾何意義得出P點軌跡,利用正弦定理解出AB,得出△ABC的面積,從而求出圍成封閉區(qū)域的面積.

解答 解:取AB的中點D,連結(jié)CD.則$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{AB}$.
∵$\overrightarrow{AP}$=$\frac{λ}{2}$$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$=λ$\overrightarrow{AD}$+(1-λ)$\overrightarrow{AC}$.
∴C,D,P三點共線.
∴P點軌跡為直線CD.
在△ABC中,cosA=$\frac{1}{5}$,sinC=$\frac{2\sqrt{6}}{7}$.
由正弦定理得$\frac{7}{\frac{2\sqrt{6}}{5}}$=$\frac{AB}{\frac{2\sqrt{6}}{7}}$,解得AB=5.
∴sinB=sin(A+C)=sinAcosC+cosAsinC=$\frac{12\sqrt{6}}{35}$.
∴S△ABC=$\frac{1}{2}×5×7×$$\frac{12\sqrt{6}}{35}$=6$\sqrt{6}$.
∴S△ACD=$\frac{1}{2}$S△ABC=3$\sqrt{6}$.
故選:A.

點評 本題考查了平面向量線性運算的幾何意義,正弦定理解三角形,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式x2-3x+2≤0的解集為( 。
A.[1,2]B.(-∞,1)∪(2,+∞)C.(1,2)D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.△ABC中,角A,B,C所對的邊分別為a,b,c,已知A=60°,b=2,S△ABC=2$\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinC}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0)的一條漸近線為y=$\sqrt{3}$x,則離心率e等于(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等比數(shù)列{an}的前n項和Sn=$\frac{1}{2}$3n+1-a,則a等于(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.用min{a,b}表示a,b兩數(shù)中的最小值,若f(x)=min{|x|,|x+t|}的圖象關(guān)于直線x=-$\frac{3}{2}$對稱,則t的值為( 。
A.-3B.3C.-6D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在銳角△ABC中,內(nèi)角A,B,C對邊分別為a,b,c,已知$\frac{sinB}{sinA+sinC}$=$\frac{c+b-a}{c+b}$
(1)求角C.
(2)求函數(shù)f(A)=$\frac{-2cos2A}{1+tanA}$+1的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知數(shù)列{an}是以t為首項,以2為公差的等差數(shù)列,數(shù)列{bn}滿足2bn=(n+1)an.若對n∈N*都有bn≥b4成立,則實數(shù)t的取值范圍是[-18,-14].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在底面為正三角形的三棱柱ABC-A1B1C1中,AB=2,AA1⊥平面ABC,E,F(xiàn)分別為BB1,AC的中點.
(1)求證:BF∥平面A1EC;
(2)若AA1=2$\sqrt{2}$,求二面角C-EA1-A的大。
(2)若AA1=2$\sqrt{2}$,求三棱錐C1-A1EC的體積.

查看答案和解析>>

同步練習冊答案