已知函數(shù)f(x)=
sinx(x<1)
x+a
x-4
(x≥1)
,函數(shù)g(x)=f(x)-x有三個(gè)不同的零點(diǎn),則a的取值范圍是( 。
A、-
25
4
<a<-4
B、a<-
25
4
C、a>-
25
4
D、-
25
4
<a<-5
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)g(x)=f(x)-x有三個(gè)不同的零點(diǎn)轉(zhuǎn)化為方程的根的個(gè)數(shù).
解答: 解:函數(shù)g(x)=f(x)-x有三個(gè)不同的零點(diǎn),
當(dāng)x<1時(shí),sinx-x=0,解得,x=0;
當(dāng)x≥1時(shí),
x+a
x-4
-x=0,
x2-5x-a
x-4
=0,
△=25+4a>0
1-5-a>0
,
解得-
25
4
<a<-4;
故選A.
點(diǎn)評(píng):本題考查了方程的根與函數(shù)的零點(diǎn)的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)A與AF2垂直的直線交x軸負(fù)半軸于Q點(diǎn),且2
F1F2
+
F2Q
=
0

(Ⅰ)求橢圓C的離心率;
(Ⅱ)若過(guò)A、Q、F2三點(diǎn)的圓恰好與直線x-
3
y-3=0相切,求橢圓C的方程;
(Ⅲ)過(guò)F2的直線l與(Ⅱ)中橢圓交于不同的兩點(diǎn)M、N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知log2[log2(log2x)]=0,則x 
1
2
=( 。
A、
2
B、2
C、2
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的偶函數(shù),y=f(x)在[0,+∞)上是減函數(shù),且f(a-3)-f(1-2a)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b都是正實(shí)數(shù),函數(shù)y=2aex+b的圖象過(guò)(0,2)點(diǎn),則
1
a
+
1
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i的虛數(shù)單位,復(fù)數(shù)
1+bi
1+i
為純虛數(shù),則實(shí)數(shù)b的值為( 。
A、0B、1C、-1D、±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足約束條件
x+y-2≥0
x-y-2≤0
y≥1
,則目標(biāo)函數(shù)z=x+2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)在y軸右邊的圖象如圖所示,則函數(shù)f(x)的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
=(2,4),
b
=(-1,2).若
c
=
a
-(
a
b
b
,則|
c
|=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案