9.已知集合A={x|x2-3x-4=0},B={x|nx+1=0},且A∪B=A,求由實數(shù)n所構(gòu)成的集合N.

分析 化簡集合A,根據(jù)A∪B=A,建立條件關(guān)系,根據(jù)集合的基本運算即可求求由實數(shù)n所構(gòu)成的集合N.

解答 解:依題意得A={x|x2-3x-4=0}={-1,4},
∵A∪B=A,
∴B⊆A,所以集合B可分為{1},{-4},或∅.
①當(dāng)B=φ時,即方程nx+1=0無實根,所以n=0,符合題意;
②當(dāng)B={-1}時,有-1是方程nx+1=0的根,所以n=1,符合題意;
③當(dāng)B={4}時,有4是方程nx+1=0的根,所以$n=-\frac{1}{4}$,符合題意;
綜上所得,a=0或a=1或$a=-\frac{1}{4}$.所以構(gòu)成的集合$N=\left\{{0,1,-\frac{1}{4}}\right\}$.

點評 本題主要考查集合的基本運算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.直線l:y=kx+m與橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
(1)原點到l的距離為1,求出k和m的關(guān)系;
(2)若l與C交于A,B兩點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,求出k和m的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,陰影部分是由四個全等的直角三角形組成的圖形,在大正方形內(nèi)隨機(jī)取一點,這一點落在小正方形內(nèi)的概率為 $\frac{1}{5}$,若直角三角形的兩條直角邊的長分別為a,b(a>b),則$\frac{a}$=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-2|x|.
(1)去絕對值,把函數(shù)f(x)寫成分段函數(shù)的形式,并作出其圖象;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a$+$\overrightarrow b$=(5,-10),$\overrightarrow a$-$\overrightarrow b$=(3,6),則$\overrightarrow a$,$\overrightarrow b$夾角的余弦值為$\frac{2\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)y=$\left\{\begin{array}{l}{|cosx|,x>1}\\{0,x≤1}\end{array}\right.$,則:f(1)=0;f($\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$;f(π)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)集合A={-1,0,1},B={a,a2},則使A∪B=A成立的a的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四邊形ABCD為矩形,EA⊥平面ABCD,EF∥AB,AB=2AE=2EF=4.
(1)設(shè)G為BC的中點,求證:FG∥平面BDE;
(2)求證:AF⊥平面FBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè){an}是等比數(shù)列,公比q=$\sqrt{2}$,Sn為{an}的前n項和.記Tn=$\frac{17{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,n∈N*,設(shè)Bn為數(shù)列{Tn}的最大項,則n=4.

查看答案和解析>>

同步練習(xí)冊答案