已知雙曲線過(guò)點(diǎn)(3,-2),且與橢圓4x2+9y2=36有相同焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程為_(kāi)_____.
由4x2+9y2=36,得
x2
9
+
y2
4
=1
,則c2=9-4=5,所以c=
5

所以橢圓的焦點(diǎn)為F1(-
5
,0),F2(
5
,0)

因?yàn)殡p曲線與橢圓有相同的焦點(diǎn),所以可設(shè)雙曲線方程為
x2
a2
-
y2
b2
=1

因?yàn)殡p曲線過(guò)點(diǎn)(3,-2),所以
9
a2
-
4
b2
=1①

又a2+b2=5②,聯(lián)立①②,解得:a2=3或a2=15(舍),b2=2.
所以雙曲線的標(biāo)準(zhǔn)方程為
x2
3
-
y2
2
=1

故答案為
x2
3
-
y2
2
=1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,圓O與離心率為
3
2
的橢圓T:
x2
a2
+
y2
b2
=1
(a>b>0)相切于點(diǎn)M(0,1).
(1)求橢圓T與圓O的方程;
(2)過(guò)點(diǎn)M引兩條互相垂直的兩直線l1、l2與兩曲線分別交于點(diǎn)A、C與點(diǎn)B、D(均不重合).
①若P為橢圓上任一點(diǎn),記點(diǎn)P到兩直線的距離分別為d1、d2,求
d21
+
d22
的最大值;
②若3
MA
MC
=4
MB
MD
,求l1與l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直線L過(guò)點(diǎn)P(2,0),斜率為
4
3
,直線L和拋物線y2
=2x相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求:
(1)P,M兩點(diǎn)間的距離/PM/:(2)M點(diǎn)的坐標(biāo);(3)線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩點(diǎn)F1(-
2
,0)
,F2(
2
,0)
,滿足條件|PF2|-|PF1|=2的動(dòng)點(diǎn)P的軌跡是曲線E,直線l:y=kx-1與曲線E交于A、B兩點(diǎn).
(Ⅰ)求k的取值范圍;
(Ⅱ)如果|AB|=6
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓焦距為2,離心率為
1
2

(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若直線l過(guò)點(diǎn)(1,2)且傾斜角為45°且與橢圓相交于A,B兩點(diǎn),求弦長(zhǎng)|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓
x2
8
+
y2
4
=1
上的點(diǎn)到直線x-y+6=0的距離的最小值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)A,B∈R,A≠B且AB≠0,則方程Bx-y+A=0和
x2
B
-
y2
A
=1
在同一坐標(biāo)系下的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)P是橢圓16x2+25y2=1600上一點(diǎn),且在x軸上方,F(xiàn)1,F(xiàn)2分別為橢圓的左、右焦點(diǎn),直線PF2的斜率為-4
3
,則△PF1F2的面積為( 。
A.32
3
B.24
3
C.32
2
D.24
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線的方程為5x2-4y2=20兩個(gè)焦點(diǎn)為F1,F(xiàn)2
(1)求此雙曲線的焦點(diǎn)坐標(biāo)和漸近線方程;
(2)若橢圓與此雙曲線有共同的焦點(diǎn),且有一公共點(diǎn)P滿足|PF1|•|PF2|=6,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案