已知等差數(shù)列{}的前n項(xiàng)和為Sn,公差d≠0,且S3=9,a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{}的通項(xiàng)公式;
(2)設(shè)=,求數(shù)列{}的前n項(xiàng)和.
(1)an=n+1;(2).
解析試題分析:本題主要考查等差數(shù)列的通項(xiàng)公式、等比數(shù)列的通項(xiàng)公式、等差數(shù)列的前n項(xiàng)和公式、等比數(shù)列的前n項(xiàng)和公式、等比中項(xiàng)等數(shù)學(xué)知識(shí),考查學(xué)生的分析問(wèn)題的能力和計(jì)算能力.第一問(wèn),先利用等比中項(xiàng)寫(xiě)出,再用等差數(shù)列的通項(xiàng)公式將和展開(kāi),用等差數(shù)列的前n項(xiàng)和將展開(kāi),兩式聯(lián)立,求出和,再寫(xiě)出通項(xiàng)公式即可;第二問(wèn),將第一問(wèn)的結(jié)果代入,化簡(jiǎn)表達(dá)式,利用等比數(shù)列的定義證明為等比數(shù)列,再利用等比數(shù)列的前n項(xiàng)和公式計(jì)算.
試題解析:(1),即(a1+2d)2=a1(a1+6d),化簡(jiǎn)得,d=0(舍去).
∴,得a1=2,d=1.
∴an=a1+(n-1)d=2+(n-1)=n+1,即an=n+1.(6分)
(2)∵bn=2an=2n+1,∴b1=4,.
∴{bn}是以4為首項(xiàng),2為公比的等比數(shù)列,
∴.(12分)
考點(diǎn):1.等比中項(xiàng);2.等差數(shù)列的通項(xiàng)公式;3.等差數(shù)列的前n項(xiàng)和公式;4.等比數(shù)列的定義;5.等比數(shù)列的前n項(xiàng)和.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正項(xiàng)數(shù)列中,,前n項(xiàng)和為,當(dāng)時(shí),有.(1)求數(shù)列的通項(xiàng)公式;
(2)記是數(shù)列的前項(xiàng)和,若的等比中項(xiàng),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列為等差數(shù)列,其公差d不為0,和的等差中項(xiàng)為11,且,令,數(shù)列的前n項(xiàng)和為.
(1)求及;
(2)是否存在正整數(shù)m,n(1<m<n),使得成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an},,,記,,
,若對(duì)于任意,A(n),B(n),C(n)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知是公比為的等比數(shù)列,且成等差數(shù)列.
⑴求的值;
⑵設(shè)是以為首項(xiàng),為公差的等差數(shù)列,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在數(shù)列中,其前項(xiàng)和為,滿(mǎn)足.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿(mǎn)足Sn-Sn-1+2SnSn-1=0(n≥2),a1=.
(1)求證:是等差數(shù)列;
(2)求an的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范圍.
(2)求{an}前n項(xiàng)和Sn最大時(shí)n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com