【題目】以直角坐標系的原點為極點, 軸的正半軸為極軸,并在兩種坐標系中取相同的長度單位,點的極坐標為,為圓心,4為半徑;又直線的極坐標方程為。

(Ⅰ)求直線和圓的普通方程;

試判定直線和圓的位置關系.若相交,則求直線被圓截得的弦長.

【答案】(1), (2)

【解析】試題分析:(1)根據(jù) 將直線的極坐標方程化為直角坐標方程,將圓心的極坐標化為直角坐標,再寫出圓的標準方程(2)根據(jù)圓心到直線距離與半徑大小關系進行判定直線和圓的位置關系.利用垂徑定理求弦長.

試題解析:解:I直線的極坐標方程為

所以直線的普通方程:

因為點的極坐標為 則圓心M的直角坐標是

所以圓的普通方程為

)圓心M到直線l的距離

所以直線l和圓相交.直線被圓截得弦長

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,長方形物體E在雨中沿面P(面積為S)的垂直方向作勻速移動,速度為,雨速沿E移動方向的分速度為。E移動時單位時間內(nèi)的淋雨量包括兩部分:(1PP的平行面(只有一個面淋雨)的淋雨量,假設其值與×S成正比,比例系數(shù)為;(2)其它面的淋雨量之和,其值為,記E移動過程中的總淋雨量,當移動距離d=100,面積S=時。

1)寫出的表達式

2)設0v≤10,0c≤5,試根據(jù)c的不同取值范圍,確定移動速度,使總淋雨量最少。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在公差不為零的等差數(shù)列{an}中,已知a1=1,且a1,a2,a5依次成等比數(shù)列.數(shù)列{bn}滿足bn+1=2bn-1,且b1=3.

(1)求{an},{bn}的通項公式;

(2)設數(shù)列的前n項和為Sn,試比較Sn與1-的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)療研究所開發(fā)一種新藥如果成人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y與時間t之間近似滿足如圖所示的曲線.

(1)寫出服藥后yt之間的函數(shù)關系式;

(2)據(jù)測定,每毫升血液中含藥量不少于4 μg時治療疾病有效假若某病人一天中第一次服藥為上午700,問:一天中怎樣安排服藥時間(4)效果最佳?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知長方體的長和寬都是cm,高是4 cm.

(1)求BCAC′所成的角的度數(shù).

(2)求AA′和BC′所成的角的度數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在空間四邊形ABCD中,ABCD,ABCD成30°角,E,F分別為BC,AD的中點,求EFAB所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓與圓 的公共點的軌跡為曲線,且曲線軸的正半軸相交于點.若曲線上相異兩點滿足直線的斜率之積為

1)求的方程;

2)證明直線恒過定點,并求定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司從1999年的年產(chǎn)值100萬元,增加到10年后2009年的500萬元,如果每年產(chǎn)值增長率相同,則每年的平均增長率是多少?(ln(1x)x,lg20.3,ln102.30)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的程序框圖,當輸入的x的值為04輸出的值相等,根據(jù)該圖和下列各小題的條件解答下面的幾個問題.

(1)該程序框圖解決的是一個什么問題?

(2)當輸入的x的值為3,求輸出的f(x)的值;

(3)要想使輸出的值最大,求輸入的x的值.

查看答案和解析>>

同步練習冊答案