已知四棱錐的底面為直角梯形,,,底面,且,是的中點(diǎn).
⑴求證:直線平面;
⑵⑵若直線與平面所成的角為,求二面角的余弦值.
⑴見(jiàn)解析;⑵1
解析試題分析:方法一:幾何法證明求角.
⑴要證直線平面,需要在平面內(nèi)找到一條與平行的直線.顯然不容易找到;故考慮利用面面平行退出線面平行, 取的中點(diǎn),構(gòu)造平面,根據(jù) ,∥可證.
⑵要求二面角,方法一:找到二面角的平面角,角的頂點(diǎn)在棱,角的兩邊在兩個(gè)半平面內(nèi)中,并且角的兩邊與棱垂直.取取的中點(diǎn),連接就是所求角.
方法二:建立空間直角坐標(biāo)系,利用向量證明,求角.
試題解析:
⑴證明:取的中點(diǎn),則,故平面;
又四邊形正方形,∴∥,故∥平面;
∴平面平面,
∴平面.
⑵由底面,得底面;
則與平面所成的角為;
∴, ∴和都是邊長(zhǎng)為正三角形,
取的中點(diǎn),則,且 .
∴為二面角的平面角;在中 ,,
∴
∴二面角的余弦值
方法二:⑴設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/41/7/5izrj.png" style="vertical-align:middle;" />,,,
∴以A為坐標(biāo)原點(diǎn)如圖建立空間直角坐標(biāo)系,取的中點(diǎn),
則各點(diǎn)坐標(biāo)為:,,,,,;
∴,,∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知空間三點(diǎn)A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)求以,為邊的平行四邊形的面積;
(2)若|a|=,且a分別與,垂直,求向量a的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體中,點(diǎn)在棱上.
(1)求異面直線與所成的角;
(2)若二面角的大小為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面,,是的中點(diǎn),作交于點(diǎn).
(1)證明平面;
(2)證明平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐的底面為正方形,側(cè)面底面.為等腰直角三角形,且.,分別為底邊和側(cè)棱的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點(diǎn).沿直線BD將△BCD翻折成△BCD,使得平面BCD平面ABD.
(1)求證:C'D平面ABD;
(2)求直線BD與平面BEC'所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面平面,是以為斜邊的等腰直角三角形,分別為,,的中點(diǎn),,.
(1)設(shè)是的中點(diǎn),證明:平面;
(2)證明:在內(nèi)存在一點(diǎn),使平面,并求點(diǎn)到,的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中點(diǎn).
(1)求證:平面BED⊥平面SAB.
(2)求直線SA與平面BED所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體ABCDA1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分別是棱AB,BC上的點(diǎn),且EB=FB=1.
(1)求異面直線EC1與FD1所成角的余弦值;
(2)試在面A1B1C1D1上確定一點(diǎn)G,使DG⊥平面D1EF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com