x是什么實數(shù)時,
4x2-16
有意義?
考點:函數(shù)的定義域及其求法
專題:計算題
分析:根據(jù)二次根式中根號里面非負即可得出答案.
解答: 解:要使根式有意義,只需使4x2-16≥0即可,
解得x≤-2,或x≥2,
∴x的取值范圍為(-∞,-2]∪[2,+∞)
點評:本題考查了二次根式的意義,開偶次方根的根式里面非負,開奇數(shù)次方根的根式里面為任意實數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC和點M滿足2
MA
+
MB
+
MC
=0.若存在實m使得
AB
+
AC
=m
AM
成立,則m=(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn=2an+(-1)n;
(1)求a1的值.
(2)令
an
2n
=bn,求證:數(shù)列{bn-bn-1}(n≥2)是等比數(shù)列;
(3)求證:對任意正整數(shù)m>4,有
1
a4
+
1
a5
+
1
a6
+…+
1
am
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個幾何體的三視圖,已知側(cè)視圖是一個等邊三角形,根據(jù)圖中尺寸(單位:cm),這個幾何體的體積為
 
cm3;表面積為
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
m
+
y2
n
=1的離心率為2,且一個焦點與拋物線x2=8y的焦點相同,則此雙曲線的方程為(  )
A、
x2
3
-y2=1
B、
x2
4
-
y2
12
=1
C、y2-
x2
3
=1
D、
y2
12
-
x2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M(-2,0),N(2,0),點P關(guān)于M,N的對稱點為A,B,點Q滿足|QA|+|QB|=12,則PQ的中點D的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1,F(xiàn)2為左右焦點,|F1F2|=2,橢圓上一動點P,左頂點為A,且cos∠F1PF2的最小值為
1
2

(1)橢圓C的方程;
(2)直線l:y=kx+m與橢圓C相交于不同的兩點M,N(均不是長軸的頂點),AH⊥MN,垂足為H,且
AH
2
=
MH
HN
,直線l是否過定點,如果過定點求出定點坐標(biāo),不過說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果兩個函數(shù)的圖象經(jīng)過平移后能夠重合,那么這兩個函數(shù)稱為“伴侶”函數(shù),下列函數(shù)中與g(x)=sinx+cosx能構(gòu)成“伴侶”函數(shù)的是( 。
A、f(x)=
2
(sinx+cosx)
B、f(x)=1+sinx
C、f(x)=sin
x
2
+cos
x
2
D、f(x)=2cos
x
2
(sin
x
2
+cos
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式an=13-3n,則數(shù)列{
1
anan+1
}的前n項和Tn=
 

查看答案和解析>>

同步練習(xí)冊答案