9.如圖,正方體ABCD-A1B1C1D1中,E、F分別是AB、BC的中點(diǎn),過點(diǎn)D1、E、F的截面將正方體分割成兩個(gè)部分,記這兩個(gè)部分的體積分別為V1、V2(V1<V2),則V1:V2=( 。
A.$\frac{1}{3}$B.$\frac{3}{5}$C.$\frac{25}{47}$D.$\frac{7}{9}$

分析 作出截面,分別求出體積,即可求出V1:V2

解答 解:如圖所示,設(shè)正方體的棱長(zhǎng)為2a,則過點(diǎn)D1、E、F的截面下方體積為$\frac{1}{3}•\frac{1}{2}•3a•3a•2a$-$\frac{1}{3}•\frac{1}{2}•a•a•\frac{2a}{3}•2$=$\frac{25}{9}{a}^{3}$,
∴另一部分體積為8a3-$\frac{25}{9}{a}^{3}$=$\frac{47}{9}{a}^{3}$,
∴V1:V2=$\frac{25}{47}$,
故選C.

點(diǎn)評(píng) 本題考查體積的計(jì)算,考查學(xué)生分析解決問題的能力,正確求出體積是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn),AA1=AC=CB=$\frac{\sqrt{2}}{2}$AB=2
(I)證明:BC1∥平面A1CD
(II)求直線EC1與面A1DC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示的算法流程圖中,第3個(gè)輸出的數(shù)是(  )
A.1B.2C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)G(x)=xlnx+(1-x)ln(1-x).
(1)求G(x)的最小值:
(2)記G(x)的最小值為e,已知函數(shù)f(x)=2a•ex+1+$\frac{a+1}{x}$-2(a+1)(a>0),若對(duì)于任意的x∈(0,+∞),恒有f(x)≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.下列不等式中恒成立的是①②.
①m-3>m-5;②5-m>3-m;③5m>3m;④5+m>5-m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)P在圓x2+y2-2x+4y+1=0上,點(diǎn)Q在不等式$\left\{\begin{array}{l}{x+y≥2}\\{0≤y≤1}\end{array}\right.$,表示的平面區(qū)域內(nèi),則線段PQ長(zhǎng)的最小值是$\sqrt{5}-2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在兩個(gè)學(xué)習(xí)基礎(chǔ)相當(dāng)?shù)陌嗉?jí)實(shí)行某種教學(xué)措施的實(shí)驗(yàn),測(cè)試結(jié)果見表,則實(shí)驗(yàn)效果與教學(xué)措施( 。
優(yōu)、良、中總計(jì)
實(shí)驗(yàn)班48250
對(duì)比班381250
總計(jì)8614100
A.有關(guān)B.無關(guān)C.關(guān)系不明確D.以上都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)由如表定義:
x25314
f(x)12345
若a0=4,an+1=f(an),n=0,1,2,…,則a2017值為( 。
A.1B.2C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)解方程:log2(4x+4)=x+log2(2x+1-3)
(2)解不等式:log2(log3(log4x))<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案