9.已知集合A={(x,y)|x,y∈R,x2+y2=1},B={(x,y)|x,y∈R,y=4x2-1},則A∩B的元素個數(shù)是3.

分析 聯(lián)立A與B中兩解析式,求出x與y的值,即可確定出兩集合的交集即可.

解答 解:聯(lián)立得:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=1}\\{y=4{x}^{2}-1}\end{array}\right.$,
消去y得:x2+(4x2-1)2=1,即16x4-7x2=0,
解得:x=0或x=±$\frac{\sqrt{7}}{4}$,
∴y=-1或y=$\frac{3}{4}$,
∴A∩B={(0,-1),($\frac{\sqrt{7}}{4}$,$\frac{3}{4}$),(-$\frac{\sqrt{7}}{4}$,$\frac{3}{4}$)},
則A∩B的元素個數(shù)是3,
故答案為:3

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知x>1,則函數(shù)y=x+$\frac{9x}{x-1}$的值域為[16,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.寫出命題“若m>0,則2x2+3x-m=0有實根”的逆命題,否命題和逆否命題;并判斷逆否命題的真假性,證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.郴州市某路公共汽車每7分鐘一趟,某位同學每天乘該路公共汽車上學,則他等車時間小于3分鐘的概率為( 。
A.$\frac{4}{7}$B.$\frac{3}{7}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.觀察下列散點圖,其中兩個變量的相關關系判斷正確的是( 。
A.a為正相關,b為負相關,c為不相關B.a為負相關,b為不相關,c為正相關
C.a為負相關,b為正相關,c為不相關D.a為正相關,b為不相關,c為負相關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.高一(3)班共有50人,若其中文藝愛好者20人,體育愛好者15人,文藝.體育均不愛好的20人,則文藝.體育均愛好的人數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.(Ⅰ)若雙曲線方程為$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1,求此雙曲線的離心率和漸進線方程;
(Ⅱ)拋物線的頂點在原點,準線是y=8,求拋物線的標準方程和焦點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在平面直角坐標系中,方程為x2+y2+DX+Ey+F=0的圓M的內接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)若四邊形ABCD的面積為40,對角線AC的長為8,$\overrightarrow{AB}•\overrightarrow{AD}=0$,且∠ADC為銳角,求圓的方程,并求出B,D的坐標;
(2)設四邊形ABCD的一條邊CD的中點為G,OH⊥AB,且垂足為H,試用平面解析幾何的研究方法判斷點O、G、H是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知頂點在原點O,準線方程是y=-1的拋物線與過點M(0,1)的直線l交于A,B兩點,若直線OA和直線OB的斜率之和為1,
(1)求出拋物線的標準方程;
(2)求直線l的方程;
(3)求直線l與拋物線相交所得的弦AB的長.

查看答案和解析>>

同步練習冊答案