某單位設(shè)計一個展覽沙盤,現(xiàn)欲在沙盤平面內(nèi),布設(shè)一個對角線在l上的四邊形電氣線路,如圖所示.為充分利用現(xiàn)有材料,邊BC,CD用一根5米長的材料彎折而成,邊BA,AD用一根9米長的材料彎折而成,要求∠A和∠C互補(bǔ),且ABBC

(1)設(shè)ABx米,cosAf(x),求f(x)的解析式,并指出x的取值范圍;

(2)求四邊形ABCD面積的最大值.

答案:
解析:

  解:(1)在△ABD中,由余弦定理得

  BD2AB2AD2-2AB·AD·cosA.

  同理,在△CBD中,BD2CB2CD2-2CB·CD·cosC.2分

  因為∠A和∠C互補(bǔ),

  所以AB2AD2-2AB·AD·cosACB2CD2-2CB·CD·cosC

 。CB2CD2+2CB·CD·cosA.4分

  即 x2+(9-x)2-2 x(9-x) cosAx2+(5-x)2+2 x(5-x) cosA.

  解得cosA,即f(x)=.其中x∈(2,5).7分

  (2)四邊形ABCD的面積

  S(AB·ADCB·CD)sinA[x(5-x)+x(9-x)]

 。x(7-x).9分

  記g(x)=(x2-4)(x2-14x+49),x∈(2,5).

  由g′(x)=2x(x2-14x+49)+(x2-4)(2 x-14)=2(x-7)(2 x2-7 x-4)=0,

  解得x=4(x=7和x=-舍).10分

  所以函數(shù)g(x)在區(qū)間(2,4)內(nèi)單調(diào)遞增,在區(qū)間(4,5)內(nèi)單調(diào)遞減.11分

  因此g(x)的最大值為g(4)=12×9=108.

  所以S的最大值為=6.… 12分

  答:所求四邊形ABCD面積的最大值為6m2.13分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•南京二模)某單位設(shè)計一個展覽沙盤,現(xiàn)欲在沙盤平面內(nèi),布設(shè)一個對角線在l上的四邊形電氣線路,如圖所示.為充分利用現(xiàn)有材料,邊BC,CD用一根5米長的材料彎折而成,邊BA,AD用一根9米長的材料彎折而成,要求∠A和∠C互補(bǔ),且AB=BC.
(1)設(shè)AB=x米,cosA=f(x),求f(x)的解析式,并指出x的取值范圍;
(2)求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年高考數(shù)學(xué)復(fù)習(xí)卷B(二)(解析版) 題型:解答題

某單位設(shè)計一個展覽沙盤,現(xiàn)欲在沙盤平面內(nèi),布設(shè)一個對角線在l上的四邊形電氣線路,如圖所示.為充分利用現(xiàn)有材料,邊BC,CD用一根5米長的材料彎折而成,邊BA,AD用一根9米長的材料彎折而成,要求∠A和∠C互補(bǔ),且AB=BC.
(1)設(shè)AB=x米,cosA=f(x),求f(x)的解析式,并指出x的取值范圍;
(2)求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年江蘇省南京市高考數(shù)學(xué)二模試卷(解析版) 題型:解答題

某單位設(shè)計一個展覽沙盤,現(xiàn)欲在沙盤平面內(nèi),布設(shè)一個對角線在l上的四邊形電氣線路,如圖所示.為充分利用現(xiàn)有材料,邊BC,CD用一根5米長的材料彎折而成,邊BA,AD用一根9米長的材料彎折而成,要求∠A和∠C互補(bǔ),且AB=BC.
(1)設(shè)AB=x米,cosA=f(x),求f(x)的解析式,并指出x的取值范圍;
(2)求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年安徽省蚌埠二中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

某單位設(shè)計一個展覽沙盤,現(xiàn)欲在沙盤平面內(nèi),布設(shè)一個對角線在l上的四邊形電氣線路,如圖所示.為充分利用現(xiàn)有材料,邊BC,CD用一根5米長的材料彎折而成,邊BA,AD用一根9米長的材料彎折而成,要求∠A和∠C互補(bǔ),且AB=BC.
(1)設(shè)AB=x米,cosA=f(x),求f(x)的解析式,并指出x的取值范圍;
(2)求四邊形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:安徽省模擬題 題型:解答題

某單位設(shè)計一個展覽沙盤,現(xiàn)欲在沙盤平面內(nèi),布設(shè)一個對角線在l上的四邊形電氣線路,如圖所示。為充分利用現(xiàn)有材料,邊BC,CD用一根5米長的材料彎折而成,邊BA,AD用一根9米長的材料彎折而成,要求∠A和∠C互補(bǔ),且AB=BC,
(1)設(shè)AB=x米,cosA=f(x),求f(x)的解析式,并指出x的取值范圍;
(2)求四邊形ABCD面積的最大值。

查看答案和解析>>

同步練習(xí)冊答案