將曲線上各點的縱坐標(biāo)縮短到原來的(橫坐標(biāo)不變),所得曲線的方程是(   )
A.B.C.D.
B
設(shè)變化后的曲線上的點坐標(biāo)為,則點在曲線上,代入可得,故選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左焦點,若橢圓上存在一點,滿足以橢圓短軸為直徑的圓與線段相切于線段的中點
(Ⅰ)求橢圓的方程;
(Ⅱ)已知兩點及橢圓:,過點作斜率為的直線交橢圓兩點,設(shè)線段的中點為,連結(jié),試問當(dāng)為何值時,直線過橢圓的頂點?
(Ⅲ) 過坐標(biāo)原點的直線交橢圓:、兩點,其中在第一象限,過軸的垂線,垂足為,連結(jié)并延長交橢圓,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線y=x-被橢圓x2+4y2=4截得的弦長為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,焦點為,其準(zhǔn)線與軸交于點;橢圓:分別以為左、右焦點,其離心率;且拋物線和橢圓的一個交點記為
(1)當(dāng)時,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,若直線經(jīng)過橢圓的右焦點,且與拋物線相交于兩點,若弦長等于的周長,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在圓上任取一點,過點軸的垂線段為垂足,當(dāng)點在圓上運動時,線段的中點的軌跡為曲線
(Ⅰ)求曲線的方程;
(Ⅱ)過點的直線與曲線相交于不同的兩點, 點在線段的垂直平分線上,且,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

曲線C:軸的交點關(guān)于原點的對稱點稱為“望點”,以“望點”為圓心,凡是與曲線C有公共點的圓,皆稱之為“望圓”,則當(dāng)a=1,b=1時,所有的“望圓”中,面積最小的“望圓”的面積為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線的焦點與橢圓的左焦點重合,則的值為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知橢圓C:+=1(a>b>0)的長軸長為4.
(1)若以原點為圓心、橢圓短半軸為半徑的圓與直線yx+2相切,求橢圓C的焦點坐標(biāo);
(2)若點P是橢圓C上的任意一點,過焦點的直線l與橢圓相交于M,N兩點,記直線PM,PN的斜率分別為kPM、kPN,當(dāng)kPM·kPN=-時,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在下列命題中:
①方程|x|+|y|=1表示的曲線所圍成區(qū)域面積為2;
②與兩坐標(biāo)軸距離相等的點的軌跡方程為y=±x;
③與兩定點(-1,0)、(1,0)距離之和等于1的點的軌跡為橢圓;
④與兩定點(-1,0)、(1,0)距離之差的絕對值等于1的點的軌跡為雙曲線.
正確的命題的序號是________.(注:把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

同步練習(xí)冊答案