(本小題滿分16分)

已知等差數(shù)列中,,令,數(shù)列的前項和為.

(1)求數(shù)列的通項公式;

(2)求證:;

(3)是否存在正整數(shù),且,使得,,成等比數(shù)列?若存在,求出的值,若不存在,請說明理由.

 

【答案】

(1).(2).

(3)不存在正整數(shù),且,使得,,成等比數(shù)列.

綜上,存在正整數(shù),且,使得,成等比數(shù)列.(16分)

【解析】(1)由于為等差數(shù)列,并且,易求出的通項公式,(2)在(1)的基礎(chǔ)上可得,則,再采用裂項求和的方示求和.

(3)先假設(shè),成等比數(shù)列,則,即,因為,所以下面討論按m=2,3,4,5,6,和幾種情況進行討論求解.

數(shù)學II(附加題)

(1)設(shè)數(shù)列的公差為,由,.

解得,∴.(4分)

(2)∵,∴

.(8分)

(3)由(2)知,,∴,

,,成等比數(shù)列,∴,即

時,,,符合題意;

時,,無正整數(shù)解;

時,,無正整數(shù)解;

時,無正整數(shù)解;

時,,無正整數(shù)解;

時,,則,而,

所以,此時不存在正整數(shù),且,使得,,成等比數(shù)列.

綜上,存在正整數(shù),且,使得,,成等比數(shù)列.(16分)

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標系中,如圖,已知橢圓的左、右頂點為A、B,右焦點為F。設(shè)過點T()的直線TA、TB與橢圓分別交于點M、,其中m>0,。

(1)設(shè)動點P滿足,求點P的軌跡;

(2)設(shè),求點T的坐標;

(3)設(shè),求證:直線MN必過x軸上的一定點(其坐標與m無關(guān))。

查看答案和解析>>

科目:高中數(shù)學 來源:2010年泰州中學高一下學期期末測試數(shù)學 題型:解答題

(本小題滿分16分)
函數(shù),(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對任意時,恒成立,求實數(shù)的范圍;
(Ⅲ)如果,當“對任意恒成立”與“內(nèi)必有解”同時成立時,求 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江蘇大豐新豐中學高二上期中考試文數(shù)學試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請注意換算單位

某開發(fā)商用9000萬元在市區(qū)購買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費用為每平方米4000元,從第二層開始,每一層的建筑費用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費用為y萬元,求函數(shù)y=f(x)的表達式;

(總開發(fā)費用=總建筑費用+購地費用)

(2)要使整幢寫字樓每平方米開發(fā)費用最低,該寫字樓應建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽省蚌埠市高二下學期期中聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分16分)設(shè)命題:方程無實數(shù)根; 命題:函數(shù)

的值域是.如果命題為真命題,為假命題,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高一第三階段檢測數(shù)學卷 題型:解答題

(本小題滿分16分)

已知函數(shù)f(x)=為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對稱軸間的距離為

(Ⅰ)求f)的值;

(Ⅱ)將函數(shù)yf(x)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標延長到原來的4倍,縱坐標不變,得到函數(shù)yg(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

 

查看答案和解析>>

同步練習冊答案