6.說出下列算法的結果.
Read a,b,c
If a2+b2=c2 then
Print“是直角三角形!”
Else
Print“非直角三角形!”
End if
運行時輸入3、4、5
運行結果為輸出:直角三角形.

分析 根據(jù)框圖的流程模擬程序運行的結果,發(fā)現(xiàn)滿足條件:a2+b2=25=c2,根據(jù)條件確定輸出的內(nèi)容.

解答 解:模擬運行程序,可得:
a=3,b=4,c=5,
滿足條件:a2+b2=25=c2,輸出“是直角三角形”,
結束.
故答案為:直角三角形.

點評 本題考查了程序框圖,根據(jù)框圖的流程模擬程序運行的結果是解答此類問題的常用方法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.對棱柱而言,下列說法正確的序號是①③.
①有兩個平面互相平行,其余各面都是平行四邊形.
②所有的棱長都相等.
③棱柱中至少有2個面的形狀完全相同.
④相鄰兩個面的交線叫做側棱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知i是虛數(shù)單位,則復數(shù)i(2+i)的共軛復數(shù)為( 。
A.1+2iB.1-2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.求滿足下列條件的雙曲線的標準方程:
(1)與雙曲線$\frac{x^2}{16}$-$\frac{y^2}{4}$=1有公共焦點,且過點(3$\sqrt{2}$,2);
(2)漸近線方程為2x±3y=0,頂點在y軸上,且焦距為2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知α∈(-$\frac{π}{3}$,$\frac{2π}{3}$),tan(α-$\frac{π}{6}$)=-2,則sinα=( 。
A.$\frac{{\sqrt{5}-2\sqrt{15}}}{10}$B.$\frac{{\sqrt{5}+2\sqrt{15}}}{10}$C.$\frac{{\sqrt{15}+2\sqrt{5}}}{10}$D.$\frac{{\sqrt{15}-2\sqrt{5}}}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知奇函數(shù)f(x)的定義域為R,直線x=1是曲線y=f(x)的對稱軸,且f(3)=1,則f(7)+f(8)=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知直線方程為(2+m)x+(1-2m)y+4-3m=0.
(1)證明:直線恒過定點;
(2)m為何值時,點Q(3,4)到直線的距離最大,最大值為多少?
(3)若直線分別與x軸、y軸的負半軸交于A、B兩點,求△AOB面積的最小值及此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知a,b∈R,函數(shù)f(x)=ln(x+1)-2在x=-$\frac{1}{2}$處于直線y=ax+b-ln2相切,設g(x)=ex+bx2+a,若在區(qū)間[1,2]上,不等式m≤g(x)≤m2-2恒成立,則實數(shù)m( 。
A.有最小值-eB.有最小值eC.有最大值eD.有最大值e+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知a,b,c分別是△ABC中角A,B,C的對邊,若$a=\sqrt{2}$,b=2,cos2(A+B)=0,則c=( 。
A.$\sqrt{2}$B.$\sqrt{10}$C.$\sqrt{2}$或$\sqrt{10}$D.$\sqrt{13}$

查看答案和解析>>

同步練習冊答案