已知點A(-
3
,1),點B在y軸上,并且直線AB的傾斜角為60°,則B點的坐標(biāo)為
 
考點:直線的傾斜角
專題:直線與圓
分析:由直線的傾斜角求得斜率,再由直線的點斜式求得直線方程,得到直線在y軸上的截距得答案.
解答: 解:∵直線AB的傾斜角為60°,
∴其斜率為tan60°=
3

由A(-
3
,1),
由點斜式得AB的方程為y-1=
3
(x+
3
),
取x=0,得y=4.
∴B點的坐標(biāo)為(0,4).
故答案為:(0,4).
點評:本題考查了直線的傾斜角,考查了直線的點斜式方程,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

|x-2|>0的解集為R.
 
(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
的夾角是45°,則向量2
a
與-
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
418
•(
8
 
1
2
•(
1
3
 -
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A,∠B,∠C所對邊分別為a,b,c,已知a,b,c成等差數(shù)列,b=2.
(1)求△ABC面積的最大值;
(2)求sinAsinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個命題中,真命題的個數(shù)是
 

①?x∈R,x2+x+3>0;
②?x∈Q,
1
3
x2+
1
2
x+1是有理數(shù);
③?α,β∈R,使sin(α+β)=sinα+sinβ;
④?x0,y0∈Z,使3x0-2y0=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是各項均為正數(shù)的等比數(shù)列,a2=2,a1•a5=16.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

十進制3721寫成:3721(10)=3×103+7×102+2×101+1×100與十進制類似,二進制11001可以寫成11001(2)=1×24+1×23+0×22+0×211×20,則五進制432132可以寫成
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)數(shù)列{an}滿足a1=
1
3
且n≥2時,an=
an-1
2-an-1
 則數(shù)列{an}通項公式是
 

查看答案和解析>>

同步練習(xí)冊答案