16.設p:不等式x2+(m-1)x+1>0的解集為R;q:?x∈(0,+∞),m≤x+$\frac{1}{x}$恒成立.若“p且q”為假命題,“p或q”為真命題,求實數(shù)m的取值范圍.

分析 根據(jù)不等式的性質分別求出命題p,q為真命題的等價條件,結合復合命題之間的關系進行求解即可.

解答 解:若p為真:判別式△<0,則(m-1)2-4<0,所以:-1<m<3
若q為真::?x∈(0,+∞),x+$\frac{1}{x}$≥2,當且僅當x=1時取“=”所以:m≤2.
(1)當p為真q為假時:2<m<3
(2)當q為真p為假時:m≤-1
綜上所述:m≤-1或2<m<3

點評 本題主要考查復合命題真假關系的應用,根據(jù)復合命題之間的關系求出命題為真命題的等價條件是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知圓柱M的底面半徑為2,高為6;圓錐N的底面直徑和母線長相等.若圓柱M和圓錐N的體積相同,則圓錐N的高為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合A={x|x2-4x+3<0},B={y|y=x2,x∈R},則A∩B=( 。
A.B.[0,1)∪(3,+∞)C.(0,3)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當0<x<1時,f(x)=8x,則f(-$\frac{19}{3}$)=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知等比數(shù)列{an}中,an>0,公比q≠1,則(  )
A.a32+a72>a42+a62B.a32+a72<a42+a62
C.a32+a72=a42+a62D.a32+a72與a42+a62的大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是(  )
A.$y=x-\frac{1}{x}$B.y=ex+xC.$y={2^x}+\frac{1}{2^x}$D.$y=\sqrt{{x^2}-1}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.去年某地的月平均氣溫y(℃)與月份x(月)近似地滿足函數(shù)y=a+bsin($\frac{π}{6}$x+$\frac{π}{6}$)(a,b為常數(shù)).若6月份的月平均氣溫約為22℃,12月份的月平均氣溫約為4℃,則該地8月份的月平均氣溫約為31℃.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.直角△ABC中,∠C=90°,D在BC上,CD=2DB,tan∠BAD=$\frac{1}{5}$,則sin∠BAC=(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{13}}{13}$D.$\frac{\sqrt{2}}{2}$或$\frac{3\sqrt{13}}{13}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.將函數(shù)f(x)=cos2x的圖象向右平移$\frac{π}{4}$個單位后得到函數(shù)g(x),則g(x)具有性質(  )
A.最大值為1,圖象關于直線$x=\frac{π}{2}$對稱B.周期為π,圖象關于點($\frac{3π}{8}$,0)對稱
C.在(-$\frac{3π}{8}$,$\frac{π}{8}$)上單調遞增,為偶函數(shù)D.在$({0,\frac{π}{4}})$上單調遞增,為奇函數(shù)

查看答案和解析>>

同步練習冊答案