一邊BC在平面內(nèi),頂點A在平面外,已知,三角形所在平面與所成的二面角為,則直線所成角的正弦值為(      )
A.B.C.D.
D  

試題分析:根據(jù)已知條件畫圖(如圖)

圖中AD⊥BC,HD⊥BC,AH⊥α,∠ABC=60°,∠ADH=30°,
所以∠ABH即為AB與α所成角,則AD=AB,AH=AD,AH=AB,
sin∠ABH==,故選D.
點評:典型題,立體幾何問題中,平行關(guān)系、垂直關(guān)系、角的計算、距離的計算、面積的計算、體積計算等,是高考?純(nèi)容。就計算問題而言,“幾何法”要遵循“一作、二證、三計算”。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖:在底面為直角梯形的四棱錐P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.

(1)求證:BD⊥平面PAC
(2)求二面角B-PC-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖所示,已知六棱錐的底面是正六邊形,平面的中點。

(Ⅰ)求證:平面//平面;
(Ⅱ)設(shè),當(dāng)二面角的大小為時,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將正方形沿對角線折成直二面角,有如下四個結(jié)論:
;     ②△是等邊三角形;
與平面所成的角為60°; ④所成的角為60°.
其中錯誤的結(jié)論是(   )
A.①B.②C.③D.④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知、是兩條不同的直線,是兩個不同的平面,則下列命題中正確的是
A.若,且,則
B.若,且,則
C.若,且,則
D.若,且,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,,,,,的中點.

求證:(1)∥平面;
(2)⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖,已知平面QBC與直線PA均垂直于所在平面,且PA=AB=AC.

(Ⅰ)求證:PA∥平面QBC;
(Ⅱ)若,求二面角Q-PB-A的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正四棱錐(底面為正方形,頂點在底面上的射影是底面的中心)的底面邊長為2,高為2,為邊的中點,動點在表面上運動,并且總保持,則動點的軌跡的周長為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是兩條不同的直線,是三個不同的平面,則下列命題中的真命題是(   )
A.若,則B.
C.若,,則D.若,,則

查看答案和解析>>

同步練習(xí)冊答案