4.為了調(diào)查高二年級(jí)630名學(xué)生對(duì)學(xué)校食堂午餐學(xué)生浪費(fèi)飯菜的情況,打算從中抽取一個(gè)容量為45的樣本,考慮采取系統(tǒng)抽樣,則分段間隔k為( 。
A.16B.14C.12D.22

分析 系統(tǒng)抽樣時(shí)將整個(gè)的編號(hào)分段要確定分段的間隔,當(dāng)總體個(gè)數(shù)除以樣本容量是整數(shù)時(shí),則間隔確定,當(dāng)不是整數(shù)時(shí),通過從總體中刪除一些個(gè)體(用簡單隨機(jī)抽樣的方法)使剩下的總體中個(gè)體的個(gè)數(shù)能被樣本容量整除.

解答 解:由題意知本題是一個(gè)系統(tǒng)抽樣,
總體中個(gè)體數(shù)是630,樣本容量是45,
根據(jù)系統(tǒng)抽樣的步驟,得到分段的間隔k=$\frac{630}{45}$=14,
故選:B.

點(diǎn)評(píng) 一般地,要從容量為N的總體中抽取容量為n的樣本,可將總體分成均衡的若干部分,然后按照預(yù)先制定的規(guī)則,從每一部分抽取一個(gè)個(gè)體,得到所需要的樣本,這種抽樣的方法叫做系統(tǒng)抽樣.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知角θ的終邊經(jīng)過點(diǎn)P(3,-4).
(1)求sinθ,cosθ和tanθ的值;
(2)求$\frac{cos(3π-θ)+cos(\frac{3π}{2}+θ)}{sin(\frac{π}{2}-θ)+tan(π+θ)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$.
(Ⅰ)求函數(shù)f(x)的最小正周期和對(duì)稱中心;
(Ⅱ)求函數(shù)f(x)在區(qū)間[$\frac{π}{3}$,π]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知雙曲線$\frac{{x}^{2}}{(m+1)^{2}}$-$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)的離心率為$\frac{\sqrt{5}}{2}$,P是該雙曲線上的點(diǎn),P在該雙曲線兩漸近線上的射影分別是A、B,則|PA|•|PB|的值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在極坐標(biāo)系中,點(diǎn)(2,$\frac{2π}{3}$)到直線$ρsin(θ-\frac{π}{3})$=0的距離為( 。
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.觀察下列各式:
C${\;}_{1}^{0}$=40
C${\;}_{3}^{0}$+C${\;}_{3}^{1}$=41;
C${\;}_{5}^{0}$+C${\;}_{5}^{1}$+C${\;}_{5}^{2}$=42;
C${\;}_{7}^{0}$+C${\;}_{7}^{1}$+C${\;}_{7}^{2}$+C${\;}_{7}^{3}$=43

照此規(guī)律,當(dāng)n∈N*時(shí),
C${\;}_{2n-1}^{0}$+C${\;}_{2n-1}^{1}$+C${\;}_{2n-1}^{2}$+…+C${\;}_{2n-1}^{n-1}$=( 。
A.4nB.4n-1C.42n-1D.42n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.當(dāng)n為正奇數(shù)時(shí),$C_7^0{7^n}+C_n^1{7^{n-1}}+C_n^2{7^{n-2}}+…+C_n^{n-1}7$除以9的余數(shù)是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.求下列函數(shù)的最大值與最小值
(1)y=2sinx-3,x∈R
(2)y=$\frac{7}{4}$+sinx-sin2x,x∈R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)$f(x)=\sqrt{a{x^2}+bx}$滿足:對(duì)于實(shí)數(shù)a的某些值,可以找到相應(yīng)正數(shù)b,使得f(x)的定義域與值域相同,那么符合條件的實(shí)數(shù)a的個(gè)數(shù)是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案