如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線軸上的截距為,交橢圓于A、B兩個(gè)不同點(diǎn).

(1)求橢圓的方程;   

(2)求m的取值范圍;  

(3)求證直線MA、MB與軸始終圍成一個(gè)等腰三角形.

 

 

 

【答案】

(1)設(shè)橢圓方程為

                       2分

  ∴橢圓方程                            4分

(2)∵直線l平行于OM,且在軸上的截距為m

      ∴l(xiāng)的方程為:

       6分

∵直線l與橢圓交于A、B兩個(gè)不同點(diǎn),

∴m的取值范圍是            9分

(3)設(shè)直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可

設(shè)

可得            11分

                   13分

∴k1+k2=0

故直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,長軸A1A2的長為4,左準(zhǔn)線l與x軸的交點(diǎn)為M,|MA1|:|A1F1|=2:1.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l1:x=m(|m|>1),P為l1上的動(dòng)點(diǎn),使∠F1PF2最大的點(diǎn)P記為Q,求點(diǎn)Q的坐標(biāo)(用m表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),l交橢圓于A、B兩個(gè)不同點(diǎn).
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與x軸始終圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
3
2
,且經(jīng)過點(diǎn)M(4,1).直線l:y=x+m交橢圓于A,B兩不同的點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)|AB|=
12
5
2
時(shí),求m的值;
(3)若直線l不過點(diǎn)M,求證:直線MA,MB與x軸圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)為A(0,
2
),且離心率為
3
2

( I)求橢圓的標(biāo)準(zhǔn)方程;
( II)過點(diǎn)M(0,2)的直線l與橢圓相交于不同兩點(diǎn)P、Q,點(diǎn)N在線段PQ上.設(shè)
|
MP
|
|
PN
|
=
|
MQ
|
|
NQ
|
=λ,試求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•馬鞍山二模)如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線l在y軸上的截距為m(m≠0),直線l交橢圓于A、B兩個(gè)不同點(diǎn)(A、B與M不重合).
(Ⅰ)求橢圓的方程;
(Ⅱ)當(dāng)MA⊥MB時(shí),求m的值.

查看答案和解析>>

同步練習(xí)冊答案