【題目】“微信運動”是由騰訊開發(fā)的一個類似計步數(shù)據(jù)庫的公眾賬號.用戶可以通過關(guān)注“微信運動”公眾號查看自己及好友每日行走的步數(shù)、排行榜,也可以與其他用戶進(jìn)行運動量的或點贊.現(xiàn)從某用戶的“微信運動”朋友圈中隨機選取40人,記錄他們某一天的行走步數(shù),并將數(shù)據(jù)整理如下:

步數(shù)/步

0~2000

2001~5000

5001~8000

8001~10000

10000以上

男性人數(shù)/人

1

6

9

5

4

女性人數(shù)/人

0

3

6

4

2

規(guī)定:用戶一天行走的步數(shù)超過8000步時為“運動型”,否則為“懈怠型”.

(1)將這40人中“運動型”用戶的頻率看作隨機抽取1人為“運動型”用戶的概率.從該用戶的“微信運動”朋友圈中隨機抽取4人,記為“運動型”用戶的人數(shù),求的數(shù)學(xué)期望;

(2)現(xiàn)從這40人中選定8人(男性5人,女性3人),其中男性中“運動型”有3人,“懈怠型”有2人,女性中“運動型”有2人,“懈怠型”有1人.從這8人中任意選取男性3人、女性2人,記選到“運動型”的人數(shù)為,求的分布列和數(shù)學(xué)期望.

【答案】(1),(2)分布列見解析,

【解析】分析:(1)由題意可知,“運動型”的概率為, 且 ,由此可求求的數(shù)學(xué)期望;

(2)由題意可知,的所有取值為,求出相應(yīng)的概率,即可得到的分布列和數(shù)學(xué)期望.

詳解:

(1)由題意可知,“運動型”的概率為,

,則,

.

(2)由題意可知,的所有取值為,

相應(yīng)的概率分別為:

,

,,

所以的分布列為:

2

3

4

5

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性

(2)若,上恒成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,∠APB=90°,∠PAB=60°,AB=BC=CA,平面PAB⊥平面ABC.

(1)求直線PC與平面ABC所成角的大;
(2)求二面角B﹣AP﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“節(jié)約用水”自古以來就是中華民族的優(yōu)良傳統(tǒng).某市統(tǒng)計局調(diào)查了該市眾多家庭的用水量情況,繪制了月用水量的頻率分布直方圖,如下圖所示.將月用水量落入各組的頻率視為概率,并假設(shè)每天的用水量相互獨立.

(l)求在未來連續(xù)3個月里,有連續(xù)2個月的月用水量都不低于12噸且另1個月的月用水量低于4噸的概率;

(2)用表示在未來3個月里月用水量不低于12噸的月數(shù),求隨杌變量的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的為(
A.y=x+1
B.y=﹣x2
C.y=
D.y=x|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是用模擬方法估計圓周率π的程序框圖,P表示估計結(jié)果,則圖中空白框內(nèi)應(yīng)填入( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點為正方形上異于點的動點,將沿翻折,得到如圖2所示的四棱錐,且平面平面,點為線段上異于點的動點,則在四棱錐中,下列說法正確的有( )

A. 直線與直線必不在同一平面上

B. 存在點使得直線平面

C. 存在點使得直線與平面平行

D. 存在點使得直線與直線垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象的一條切線為.

(1)設(shè)函數(shù),討論的單調(diào)性;

(2)若函數(shù)的圖象恒與x軸有兩個不同的交點M(,0),N(,0),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合集合,集合,且集合D滿足.

(1)求實數(shù)a的值.

(2)對集合,其中,定義由中的元素構(gòu)成兩個相應(yīng)的集合:,,其中是有序?qū)崝?shù)對,集合ST中的元素個數(shù)分別為,若對任意的,總有,則稱集合具有性質(zhì)P.

①請檢驗集合是否具有性質(zhì)P,并對其中具有性質(zhì)P的集合,寫出相應(yīng)的集合ST.

②試判斷mn的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案