2.《張丘建算經(jīng)》是我國(guó)南北朝時(shí)期的一部重要數(shù)學(xué)著作,書(shū)中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書(shū)中有這樣一個(gè)問(wèn)題,大意為:某女子善于織布,后一天比前一天織得快,而且每天增加的數(shù)量相同,已知第一天織布4尺,半個(gè)月(按15天計(jì)算)總共織布81尺,問(wèn)每天增加的數(shù)量為多少尺?該問(wèn)題的答案為$\frac{1}{5}$.

分析 每天增加的數(shù)量為d尺,利用等差數(shù)列前n項(xiàng)和公式列出方程組,能求出公差d.

解答 解:每天增加的數(shù)量為d尺,
由題意得:
${S}_{15}=15×4+\frac{15×14}{2}d=81$,
解得d=$\frac{1}{5}$.
故答案為:$\frac{1}{5}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的公差的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.下列命題中的假命題是( 。
A.?x∈R,x2≥0B.?x∈R,2x-1>0
C.?x∈R,lgx<1D.?x∈R,sinx+cosx=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.原點(diǎn)到直線4x+3y-1=0的距離為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知元素為實(shí)數(shù)的集合S滿足下列條件:①0∉S,1∉S;②若a∈S,則$\frac{1}{1-a}$∈S.
(Ⅰ)若{2,-2}⊆S,求使元素個(gè)數(shù)最少的集合S;
(Ⅱ)若非空集合S為有限集,則你對(duì)集合S的元素個(gè)數(shù)有何猜測(cè)?并請(qǐng)證明你的猜測(cè)正確.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知直線經(jīng)過(guò)直線3x+4y-2=0與直線2x+y+2=0的交點(diǎn)P,并且垂直于直線x-2y-1=0.
(Ⅰ)求交點(diǎn)P的坐標(biāo);
(Ⅱ)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知p:|x-1|<2,q:f(x)=$\frac{{x}^{2}+1}{x}$的最小值為2,則p是q的( 。
A.充分而不必要條件B.充要條件
C.必要而不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x∈(-∞,0]}\\{{x}^{2}+2ax+1,x∈(0,+∞)}\end{array}\right.$,若函數(shù)g(x)=f(x)+2x-a有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(0,+∞)B.(-∞,-1)C.(-∞,-3)D.(0,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知三棱臺(tái)ABC-A1B1C1中,AB=BC=4,AC=2A1C1=2$\sqrt{2}$,AA1=CC1=1,平面AA1B1B⊥平面AA1C1C.
(1)求證:BB1⊥平面AA1C1C;
(2)點(diǎn)D為AB上一點(diǎn),二面角D-CC1-B的大小為30°,求BC與平面DCC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若x>2m2-3是-1<x<4的必要不充分條件,則實(shí)數(shù)m的取值范圍是(  )
A.[-3,3]B.(-∞,-3]∪[3,+∞)C.(-∞,-1]∪[1,+∞)D.[-1,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案