(本題滿分12分)
雙曲線
的左、右焦點(diǎn)分別為
、
,
為坐標(biāo)原點(diǎn),點(diǎn)
在雙曲線的右支上,點(diǎn)
在雙曲線左準(zhǔn)線上,
(Ⅰ)求雙曲線的離心率
;
(Ⅱ)若此雙曲線過
,求雙曲線的方程;
(Ⅲ)在(Ⅱ)的條件下,
、
分別是雙曲線的虛軸端點(diǎn)(
在
軸正半軸上),過
的直線
交雙曲線
、
,
,求直線
的方程
(Ⅰ)2
(Ⅱ)
(Ⅲ)
解:(Ⅰ)
四邊形
是平行四邊形,
即
,
∴平行四邊形
是菱形.
如圖,則
,
,
由雙曲線定義得
(
舍去) …………3分
(Ⅱ)由
,
雙曲線方程為
把點(diǎn)
代入有得
,
∴雙曲線方程
………6分
(Ⅲ)
,
,設(shè)
的方程為
則由
,
因
與與雙曲線有兩個交點(diǎn),
,
,
…………8分
,
,
,
,
滿足
,
…………10分
故所求直線
方程為
…………12分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若橢圓
(a>b>0)的離心率e=
,則雙曲線
離心率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
雙曲線
-
=1(a>0,b>0)的一條漸近線方程為y=x,則有
A.a(chǎn)=2b | B.b=a | C.b=2a | D.a(chǎn)=b |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知雙曲線中心與橢圓
共焦點(diǎn),他們的離心率之和為
,求雙曲線的標(biāo)準(zhǔn)方程
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
雙曲線
=1(b∈N)的兩個焦點(diǎn)
、
,
為雙曲線上一點(diǎn),
成等比數(shù)列,則
=_____
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線x
2-
=1,過P(2,1)點(diǎn)作一直線交雙曲線于A、B兩點(diǎn),并使P為AB的中點(diǎn),則直線AB的斜率為______
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
雙曲線
的右焦點(diǎn)是拋物線的焦點(diǎn),則拋物線的標(biāo)準(zhǔn)方程是 ▲ .
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)P為雙曲線
上的一點(diǎn),
是該雙曲線的兩個焦點(diǎn),若
,則
的面積為___________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
焦距是10,虛軸長是8,經(jīng)過點(diǎn)(
, 4)的雙曲線的標(biāo)準(zhǔn)方程是( )
查看答案和解析>>