9.閱讀如圖所示的程序框圖,若輸入p=2,q=9,則輸出的a、i的值分別為( 。
A.a=3,i=1B.a=18,i=16C.a=18,i=15D.a=9,i=7

分析 根據(jù)框圖的流程依次計(jì)算運(yùn)行的結(jié)果,直到滿足條件q整除a,確定a,i的值.

解答 解:p=2,q=9時(shí),
第一次循環(huán),i=1,a=3,q不能整除3,i=2,
第二次循環(huán),a=4,q不能整除3,i=3,
第三次循環(huán),a=5,q不能整除3,i=4,
第四次循環(huán),a=6,q不能整除3,i=5,
第五次循環(huán),a=7,q不能整除3,i=6,
第六次循環(huán),a=8,q不能整除3,i=7,
第七次循環(huán),a=9,q能整除3,
輸出a=9,i=7,
故選:D.

點(diǎn)評(píng) 本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程依次計(jì)算運(yùn)行的結(jié)果是解答此類問題的常用方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=alnx+x2-x,其中a∈R.
(Ⅰ)若a<0,討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)x≥1時(shí),f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,若$\frac{1}{2}≤\frac{{{a_{n+1}}}}{a_n}≤2$(n∈N*),則稱{an}是“緊密數(shù)列”;
(1)若a1=1,${a_2}=\frac{3}{2}$,a3=x,a4=4,求x的取值范圍;
(2)若{an}為等差數(shù)列,首項(xiàng)a1,公差d,且0<d≤a1,判斷{an}是否為“緊密數(shù)列”;
(3)設(shè)數(shù)列{an}是公比為q的等比數(shù)列,若數(shù)列{an}與{Sn}都是“緊密數(shù)列”,求q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.二項(xiàng)式${(\frac{2}{x}+x)^4}$的展開式中常數(shù)項(xiàng)為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}的前n項(xiàng)和為Sn,且3Sn=2×4n-2,n∈N*
(I)求數(shù)列{an}的通項(xiàng)公式an;
(II)設(shè)數(shù)列{bn}滿足bn=log2an,求Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$的表達(dá)式(用含n的代數(shù)式表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足$\overrightarrow{B{F}_{1}}$=$\overrightarrow{{F}_{1}{F}_{2}}$,且$\overrightarrow{AB}$•$\overrightarrow{A{F}_{2}}$=0.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若D是經(jīng)過A、B、F2三點(diǎn)的圓上的點(diǎn),且D到直線l:x-$\sqrt{3}$y-3=0的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓C的方程;
(Ⅲ)在(Ⅱ)的條件下,設(shè)P、Q是橢圓C上異于A的兩點(diǎn),且以PQ為直徑的圓過點(diǎn)A,問直線PQ是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為響應(yīng)陽(yáng)光體育運(yùn)動(dòng)的號(hào)召,某縣中學(xué)生足球活動(dòng)正如火如荼的開展,該縣為了解本縣中學(xué)生的足球運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全縣24000名中學(xué)生(其中男生14000人,女生10000人)中抽取120名,統(tǒng)計(jì)他們平均每天足球運(yùn)動(dòng)的時(shí)間,如表:(平均每天足球運(yùn)動(dòng)的時(shí)間單位為小時(shí),該縣中學(xué)生平均每天足球運(yùn)動(dòng)的時(shí)間范圍是[0,3])
男生平均每天足球運(yùn)動(dòng)的時(shí)間分布情況:
平均每天足球運(yùn)動(dòng)的時(shí)間[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人數(shù)23282210x
女生平均每天足球運(yùn)動(dòng)的時(shí)間分布情況:
平均每天足球運(yùn)動(dòng)的時(shí)間[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人數(shù)51218103y
(Ⅰ)請(qǐng)根據(jù)樣本估算該校男生平均每天足球運(yùn)動(dòng)的時(shí)間(結(jié)果精確到0.1);
(Ⅱ)若稱平均每天足球運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“足球健將”.低于2小時(shí)的學(xué)生為“非足球健將”.
①請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過計(jì)算判斷,能否有90%的把握認(rèn)為是否為“足球健將”與性別有關(guān)?
足球健將非足球健將總  計(jì)
男  生
女  生
總  計(jì)
②若在足球活動(dòng)時(shí)間不足1小時(shí)的男生中抽取2名代表了解情況,求這2名代表都是足球運(yùn)動(dòng)時(shí)間不足半小時(shí)的概率.
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2>k00.500.400.250.150.100.050.0250.010
  k00.4550.7081.3232.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=x2+m與函數(shù)$g(x)=-ln\frac{1}{x}-3x$$(x∈[\frac{1}{2},2])$的圖象上至少存在一對(duì)關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$[\frac{5}{4}+ln2,2]$B.$[2-ln2,\frac{5}{4}+ln2]$C.$[\frac{5}{4}+ln2,2+ln2]$D.[2-ln2,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知拋物線E:x2=2py(p>0),其焦點(diǎn)為F,過F且斜率為1的直線被拋物線截得的弦長(zhǎng)為8.
(1)求拋物線E的方程;
(2)設(shè)A為E上一動(dòng)點(diǎn)(異于原點(diǎn)),E在點(diǎn)A處的切線交x軸于點(diǎn)P,原點(diǎn)O關(guān)于直線PF的對(duì)稱點(diǎn)為點(diǎn)B,直線AB與y軸交于點(diǎn)C,求△OBC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案