若直線
x=tcosα
y=tsinα
(t為參數(shù))被圓ρ=2
2
cos(θ+
π
4
)截得的弦長為最大,則此直線的傾斜角為
 
考點(diǎn):參數(shù)方程化成普通方程,簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:把圓的極坐標(biāo)方程化為直角坐標(biāo)方程(x-1)2+(y+1)2=2,可知此圓經(jīng)過原點(diǎn).即可得出直線的斜率與傾斜角.
解答:解:圓ρ=2
2
cos(θ+
π
4
)化為ρ2=2
2
ρ(
2
2
cosθ-
2
2
sinθ)
=2ρcosθ-2ρsinθ,
∴x2+y2=2x-2y,配方為(x-1)2+(y+1)2=2.圓心C(1,-1),半徑r=
2

可知此圓經(jīng)過原點(diǎn).
直線
x=tcosα
y=tsinα
(t為參數(shù))化為y=xtanα.
∴當(dāng)直線y=xtanα經(jīng)過圓心C時(shí),截得的弦長為最大.
∴tanα=
-1
1
=-1.
∵α∈[0,π).
α=
4

故答案為:
4
點(diǎn)評(píng):本題考查了把圓的極坐標(biāo)方程化為直角坐標(biāo)方程、直線與圓相交問題、直線的斜率與傾斜角之間的關(guān)系,考查了推理能力和計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C1的極坐標(biāo)方程為ρ2-4ρcosθ+2=0,曲線C2的參數(shù)方程為
x=t
y=
t
 (t為參數(shù),)C1與C2的交點(diǎn)的直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓錐曲線
x=2tanθ
y=3secθ
(θ為參數(shù))的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線
x=-tcos50°
y=3-tsin40°
(t為參數(shù))的傾斜角α等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,已知直線l上兩點(diǎn)M,N的極坐標(biāo)分別為(2,0),(
2
3
3
π
2
)
,圓C的參數(shù)方程為
x=2+2cosθ
y=-
3
+2sinθ
(θ為參數(shù)).①設(shè)P為線段MN的中點(diǎn),求直線OP的平面直角坐標(biāo)方程;②判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面直角坐標(biāo)系xOy,以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的參數(shù)方程為
x=2cosφ
y=2+2sinφ
(φ為參數(shù)).點(diǎn)A,B是曲線C上兩點(diǎn),點(diǎn)A,B的極坐標(biāo)分別為(ρ1,
π
3
),(ρ2
6
).
(Ⅰ)寫出曲線C的普通方程和極坐標(biāo)方程;
(Ⅱ)求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1
x=-4+cosα
y=3+sinα
,(α為參數(shù)),C2
x=8cosθ
y=3sinθ
,(θ為參數(shù))
(Ⅰ)化C1,C2的方程為普通方程,并說明它們分別表示什么曲線;
(Ⅱ)若C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為α=
π
2
,Q為C2上的動(dòng)點(diǎn),求PQ中點(diǎn)M到直線C3
x=3+2t
y=-2+t
,(t為參數(shù))距離的最小值及此時(shí)Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(1+
10
cosa,
10
sina)(a∈[0,2π]),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)Q在曲線C:ρ=
1
2
sin(θ-
π
4
)
上.
(Ⅰ)求點(diǎn)P的軌跡極坐標(biāo)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)求點(diǎn)P的軌跡與曲線C交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
cos(πx)
x2
的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案