(20) (本小題滿分12分)

設函數(shù)f(x)=tx2+2t2x+t-1(x∈R,t>0).

(I)求f (x)的最小值h(t);

(II)若h(t)<-2t+m對t∈(0,2)恒成立,求實數(shù)m的取值范圍.

h(t)=-t3+t-1.,


解析:

解:(I)∵   (),

∴當x=-t時,f(x)取最小值f(-t)=-t2+t-1,

h(t)=-t3+t-1. m>1

(II)令g(t)=h(t)-(-2t+m)=-t3+3t-1-m,

g’(t)=-3t2+3=0得t=1,t=-1(不合題意,舍去).

t變化時g’(t)、g(t)的變化情況如下表:

T

(0,1)

1

(1,2)

g’(t)

+

0

-

g(t)

遞增

極大值1-m

遞減

g(t)在(0,2)內(nèi)有最大值g(1)=1-m

h(t)<-2t+m在(0,2)內(nèi)恒成立等價于g(t)<0在(0,2)內(nèi)恒成立,

即等價于1-m<0

所以m的取值范圍為m>1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)

商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費每滿100元可以轉(zhuǎn)動如圖所示的圓盤一次,其中O為圓心,且標有20元、10元、0元的三部分區(qū)域面積相等,假定指針停在任一位置都是等可能的.當指針停在某區(qū)域時,返相應金額的優(yōu)惠券。(例如:某顧客消費了218元,第一次轉(zhuǎn)動獲得了20元,第二次獲得了10元,則其共獲得了30元優(yōu)惠券。)顧客甲和乙都到商場進行了消費,并按照規(guī)則參與了活動.

   (I)若顧客甲消費了128元,求他獲得優(yōu)惠券面額大于0元的概率?

   (II)若顧客乙消費了280元,求他總共獲得優(yōu)惠券金額不低于20元的概率?

查看答案和解析>>

科目:高中數(shù)學 來源:煙臺市英文學校2010屆高三一?荚囄目茢(shù)學試題 題型:解答題

(本小題滿分13分)

某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費每滿100元可以轉(zhuǎn)動如圖所示的圓盤一次,其中O為圓心,且標有20元、10元、0元的三部分區(qū)域面積相等,假定指針停在任一位置都是等可能的.當指針停在某區(qū)域時,返相應金額的優(yōu)惠券。(例如:某顧客消費了218元,第一次轉(zhuǎn)動獲得了20元,第二次獲得了10元,則其共獲得了30元優(yōu)惠券。)顧客甲和乙都到商場進行了消費,并按照規(guī)則參與了活動.

   (I)若顧客甲消費了128元,求他獲得優(yōu)惠券面額大于0元的概率?

   (II)若顧客乙消費了280元,求他總共獲得優(yōu)惠券金額不低于20元的概率?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市海淀區(qū)高三下學期一模數(shù)學(文)測試 題型:解答題

(本小題滿分13分)

    某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費每滿100元可以轉(zhuǎn)動如圖所示的圓盤一次,其中O為圓心,且標有20元、10元、0元的三部分區(qū)域面積相等,假定指針停在任一位置都是等可能的.當指針停在某區(qū)域時,返相應金額的優(yōu)惠券。(例如:某顧客消費了218元,第一次轉(zhuǎn)動獲得了20元,第二次獲得了10元,則其共獲得了30元優(yōu)惠券。)顧客甲和乙都到商場進行了消費,并按照規(guī)則參與了活動.

  (I)若顧客甲消費了128元,求他獲得優(yōu)惠券面額大于0元的概率?

  (II)若顧客乙消費了280元,求他總共獲得優(yōu)惠券金額不低于20元的概率?

                   

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)

    某商場為吸引顧客消費推出一項優(yōu)惠活動.活動規(guī)則如下:消費每滿100元可以轉(zhuǎn)動如圖所示的圓盤一次,其中O為圓心,且標有20元、10元、0元的三部分區(qū)域面積相等,假定指針停在任一位置都是等可能的.當指針停在某區(qū)域時,返相應金額的優(yōu)惠券。(例如:某顧客消費了218元,第一次轉(zhuǎn)動獲得了20元,第二次獲得了10元,則其共獲得了30元優(yōu)惠券。)顧客甲和乙都到商場進行了消費,并按照規(guī)則參與了活動.

  (I)若顧客甲消費了128元,求他獲得優(yōu)惠券面額大于0元的概率?

  (II)若顧客乙消費了280元,求他總共獲得優(yōu)惠券金額不低于20元的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010廣東理數(shù))20.(本小題滿分為14分)

 一條雙曲線的左、右頂點分別為A1,A2,點是雙曲線上不同的兩個動點。

    (1)求直線A1P與A2Q交點的軌跡E的方程式;

(2)若過點H(0, h)(h>1)的兩條直線l1和l2與軌跡E都只有一個交點,且 ,求h的值。

查看答案和解析>>

同步練習冊答案