分析 由三視圖畫(huà)出幾何體的直觀圖,確定幾何體的線面關(guān)系和數(shù)量關(guān)系,由椎體的體積公式求出此幾何體的體積;由線面垂直的判定定理和定義證明側(cè)面均為直角三角形,由三角形的面積公式求出三棱錐的表面積.
解答 解:由三視圖可知此幾何體為一個(gè)三棱錐,其直觀圖如圖:
側(cè)棱PA⊥平面ABC,△ABC為等腰直角三角形,
且∠C=90°,PA=AB=2,
∴AC=BC=$\sqrt{2}$,
∴此幾何體的體積V=$\frac{1}{3}{S}_{△ABC}•PA$=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×2$=$\frac{2}{3}$;
∵PA⊥平面ABC,∴BC⊥PA,
又BC⊥AC,PA∩AC=A,
∴BC⊥平面PAC,PC?平面PAC,∴BC⊥PC,
∴△PCB為直角三角形,且PC=$\sqrt{P{A}^{2}+A{C}^{2}}$=$\sqrt{6}$,
∴其表面積S=S△PAC+S△PAB+S△PBC+S△ABC
=$\frac{1}{2}×2×\sqrt{2}+\frac{1}{2}×2×2+\frac{1}{2}×\sqrt{2}×\sqrt{6}+\frac{1}{2}×\sqrt{2}×\sqrt{2}$
=$3+\sqrt{2}+\sqrt{3}$,
故答案為:$\frac{2}{3}$;$3+\sqrt{2}+\sqrt{3}$
點(diǎn)評(píng) 本題考查三視圖求幾何體的體積以及表面積,以及線面垂直的定義和判定定理,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\frac{{2\sqrt{6}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 3 | 4 | 7 | 14 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 17 | x | 4 | 2 |
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 1 | 2 | 8 | 9 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 10 | 10 | y | 4 |
甲校 | 乙校 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) |
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com