若函數(shù)f(x)=lnx+kx-1有兩個零點,則實數(shù)k的取值范圍是( 。
A、(-
1
e2
,0)
B、(-∞,-
1
e2
C、(-
1
e2
,+∞)
D、(-e2,-
1
e2
考點:函數(shù)零點的判定定理
專題:計算題,作圖題,函數(shù)的性質(zhì)及應用,導數(shù)的概念及應用
分析:作函數(shù)y=lnx-1與y=-kx的圖象,當直線與y=lnx-1相切時,設(shè)切點(x,lnx-1);從而利用導數(shù)及斜率定義分別求斜率,從而求出0<-k<
1
e2
;從而求k的取值范圍.
解答: 解:作函數(shù)y=lnx-1與y=-kx的圖象如下,

當直線與y=lnx-1相切時,設(shè)切點(x,lnx-1);
y′=
1
x
,
lnx-1
x
=
1
x
;
解得,x=e2;
則-k=
1
e2
;
故0<-k<
1
e2
;
故-
1
e2
<k<0;
故選:A.
點評:本題考查了函數(shù)的圖象的應用及函數(shù)零點的判定定理的應用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知集合A={x|3≤x<5},B={x|4<x<6}.
(1)求A∪B中整數(shù)構(gòu)成的集合M的子集合的個數(shù);
(2)若函數(shù)f(x)=x+log3x的定義域為A∪B,求該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(x2-
1
5
x
3
5的展開式中的常數(shù)項為T,f(x)是以T為周期的偶函數(shù),且當x∈[0,1]時,f(x)=x,若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-kx-2k有4個零點,則實數(shù)k的取值范圍是(  )
A、(0,
1
4
]
B、[0,
1
4
]
C、(0,
1
5
]
D、[0,
1
5
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{2n-1•an}的前n項和Sn=9-6n,則數(shù)列{an}的通項公式為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

圓的外切正十二邊形的面積為12,則該圓的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等比數(shù)列{an}中,已知a2=6,a5-2a4-a3+12=0,求an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F為拋物線C:y2=2px(p>0)的焦點,過F作斜率為1的直線交拋物線C于A、B兩點,設(shè)|FA|>|FB|,則
|FA|
|FB|
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC的面積為
1
4
(a2+b2-c2),其中邊a,b,c為角A、B、C所對的邊,則C=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知AC,BD為圓O:x2+y2=4的兩條互相垂直的弦,且垂足為M(1,
2
),則四邊形ABCD面積的最大值為( 。
A、5B、10C、15D、20

查看答案和解析>>

同步練習冊答案