【題目】已知圓及直線,直線被圓截得的弦長(zhǎng)為

)求實(shí)數(shù)的值.

)求過(guò)點(diǎn)并與圓相切的切線方程.

【答案】(1);(2)

【解析】

試題分析:(1)根據(jù)圓的方程找出圓心坐標(biāo)與圓的半徑,然后利用點(diǎn)到直線的距離公式表示出圓心到直線的距離然后根據(jù)垂徑定理得到弦心距,弦的一半及圓的半徑成直角三角形,利用勾股對(duì)了列出關(guān)于的方程,求出方程的解即可得到的值,然后由大于0,得到滿足題意的值;(2)(1)求出的值代入圓的方程中確定出圓的方程,即可得到圓心的坐標(biāo),并判斷得到已知點(diǎn)在圓外,分兩種情況:當(dāng)切線的斜率不存在時(shí),得到為圓的切線;當(dāng)切線的斜率存在時(shí),設(shè)切線的斜率為,和設(shè)出的寫出切線的方程,根據(jù)直線與圓相切時(shí)圓心到直線的距離等于圓的半徑利用點(diǎn)到直線的距離公式表示出圓心到切線的距離,讓等于圓的半徑即可列出關(guān)于的方程,求出方程的解即可得到的值,的值代入所設(shè)的切線方程即可確定出切線的方程.

試題解析)根據(jù)題意可得圓心,半徑,則圓心到直線的距離

由勾股定理可以知道,代入化簡(jiǎn)得,

解得,

,

所以

)由(知圓,圓心為,半徑,

點(diǎn)到圓心的距離為,故點(diǎn)在圓外,

當(dāng)切線方程的斜率存在時(shí),設(shè)方程為,則圓心到切線的距離,

化簡(jiǎn)得:,故

∴切線方程為,

當(dāng)切線方程斜率不存在時(shí),直線方程為與圓相切,

綜上,過(guò)點(diǎn)并與圓相切的切線方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且2sin Acos B=2sin C﹣sin B. ①求角A;
②若a=4 ,b+c=8,求△ABC 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為 (θ為參數(shù)).
(1)以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求橢圓C的極坐標(biāo)方程;
(2)設(shè)M(x,y)為橢圓C上任意一點(diǎn),求x+2y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正三棱柱的棱長(zhǎng)均為.點(diǎn)是側(cè)棱的中點(diǎn),點(diǎn)、分別是側(cè)面,底面的動(dòng)點(diǎn),且平面,平面.則點(diǎn)的軌跡的長(zhǎng)度為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算機(jī)在數(shù)據(jù)處理時(shí)使用的是二進(jìn)制,例如十進(jìn)制的1、2、3、4在二進(jìn)制分別表示為1、10、11、100.下面是某同學(xué)設(shè)計(jì)的將二進(jìn)制數(shù)11111化為十進(jìn)制數(shù)的一個(gè)流程圖,則判斷框內(nèi)應(yīng)填入的條件是(
A.i>4
B.i≤4
C.i>5
D.i≤5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形所在的平面與正方形所在的平面相互垂直,點(diǎn)的中點(diǎn).

I)求證: 平面

II)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的定義域;

2)判斷的單調(diào)性,及單調(diào)區(qū)間;

3)試求函數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在北京召開的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客.我們教材中利用該圖作為一個(gè)說(shuō)法的一個(gè)幾何解釋,這個(gè)說(shuō)法正確的是(

A.如果,那么B.如果,那么

C.對(duì)任意正實(shí)數(shù),有, 當(dāng)且僅當(dāng)時(shí)等號(hào)成立D.對(duì)任意正實(shí)數(shù),有,當(dāng)且僅當(dāng)時(shí)等號(hào)成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=logax(a>0,a≠1),設(shè)數(shù)列f(a1),f(a2),f(a3),…,f(an)…是首項(xiàng)為4,公差為2的等差數(shù)列.
(I)設(shè)a為常數(shù),求證:{an}成等比數(shù)列;
(II)設(shè)bn=anf(an),數(shù)列{bn}前n項(xiàng)和是Sn , 當(dāng)時(shí),求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案