已知命題p:
x2
k
+
y2
4-k
=1
表示焦點在x軸上的橢圓,命題q:(k-1)x2+(k-3)y2=1表示雙曲線.若p和q有且僅有一個正確,求k的取值范圍.
當(dāng)p正確時,k>4-k>0,即2<k<4.
當(dāng)q正確時,(k-1)(k-3)<0即1<k<3.
由題設(shè),若p和q有且只有一個正確,則
(1)若 p正確q不正確,∴
2<k<4
k≤1或k≥3
,∴3<k≤4.
(2)若 q正確p不正確∴
k≤2或k>4
1<k<3
,∴1<k≤2.
∴綜上所述,若p和q有且僅有一個正確,k的取值范圍是k∈(1,2]∪(3,4].
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:
x2
k
+
y2
4-k
=1
表示焦點在x軸上的橢圓,命題q:(k-1)x2+(k-3)y2=1表示雙曲線.若p和q有且僅有一個正確,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線,q:過點M(2,1)的直線與橢圓
x2
5
+
y2
k
=1
恒有公共點,若p∧q為真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:方程
x2
k-1
+
y2
k-3
=1
表示雙曲線,q:不等式kx2-x+
k
16
>0
對一切x∈R恒成立,若p∧q為真命題,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:方程
x2
k-4
+
y2
k-6
=1
表示雙曲線;命題q:過點M(2,1)的直線與橢圓
x2
5
+
y2
k
=1
恒有公共點,若p與q中有且僅有一個為真命題,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案