19.如果實(shí)數(shù)x,y滿足條件$\left\{{\begin{array}{l}{x+2y-4≥0}\\{x-y+2≥0}\\{2x+y-3≤0}\end{array}}\right.$,且(x+a)2+y2的最小值為6,a>0,則a=$\sqrt{2}$.

分析 做出可行域,則可行域內(nèi)的點(diǎn)到P(-a,0)的最短距離的平方為6,利用可行域判斷出最優(yōu)解的位置,代入距離公式計(jì)算即可.

解答 解:做出可行域如圖所示:

則O到可行域的最短距離的平方為($\frac{4}{\sqrt{1+4}}$)2=$\frac{16}{5}$,
∵a>0,∴P(-a,0)在x軸負(fù)半軸上,
∴可行域內(nèi)的A點(diǎn)到P(-a,0)的距離最短.
解方程組$\left\{\begin{array}{l}{x+2y-4=0}\\{x-y+2=0}\end{array}\right.$得A(0,2),
∴a2+4=6,解得a=$\sqrt{2}$.
故答案為$\sqrt{2}$.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃,做出可行域?qū)ふ易顑?yōu)解的位置是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在四棱錐P-ABCD中,設(shè)底面ABCD是邊長為1的正方形,PA⊥面ABCD.
(1)求證:PC⊥BD;
(2)過BD且與直線PC垂直的平面與PC交于點(diǎn)E,當(dāng)三棱錐E-BCD的體積最大時(shí),求二面角E-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,三內(nèi)角A,B,C的對(duì)邊分別為a,b,c,面積為S=$\frac{1}{2}$bcsinA,若S+a2=(b+c)2,則cosA等于( 。
A.-$\frac{15}{17}$B.-$\frac{4}{5}$C.$\frac{15}{17}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若$\overrightarrow a$,$\overrightarrow b$滿足|$\overrightarrow a$|=1,|$\overrightarrow b$|=2,且($\overrightarrow a$+$\overrightarrow b$)⊥$\overrightarrow a$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=2sin($\frac{π}{2}$x+$\frac{π}{3}$),則f(1)+f(2)+…+f(2016)的值為( 。
A.1B.1-$\sqrt{3}$C.-$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={1,2,3,4,5},B={6,7,8},從集合A到集合B的映射f中滿足f(1)≤f(2)≤f(3)≤f(4)≤f(5)的映射的個(gè)數(shù)是( 。
A.3B.6C.12D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)的最小正周期為π的是( 。
A.y=cos2xB.y=|sin$\frac{x}{2}$|C.y=sinxD.y=tan$\frac{x}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在二項(xiàng)式($\frac{1}{{\sqrt{x}}}$-x24展開式中含x3項(xiàng)的系數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{5(\frac{1}{2})^{2x},-1≤x<1}\\{1+\frac{4}{{x}^{2}},x≥1}\end{array}\right.$設(shè)m>n≥-1,且f(m)=f(n),則m•f($\sqrt{2}$m)的最小值為( 。
A.4B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案