(13分)設(shè)為常數(shù))。

(1)當(dāng)時(shí),證明:不是奇函數(shù);

(2)設(shè)是奇函數(shù),求的值;

(3)當(dāng)是奇函數(shù)時(shí),研究是否存在這樣的實(shí)數(shù)集的子集,對(duì)任何屬于、,都有成立?若存在試找出所有這樣的;若不存在,請(qǐng)說(shuō)明理由。

解析:(Ⅰ)舉出反例即可.,,

所以,不是奇函數(shù);……………4分

(Ⅱ)是奇函數(shù)時(shí),,

對(duì)定義域內(nèi)任意實(shí)數(shù)成立.

化簡(jiǎn)整理得,這是關(guān)于的恒等式,

所以所以 .  經(jīng)檢驗(yàn)都符合題意.……………8分

(Ⅲ)(1)當(dāng)時(shí),,因?yàn)?IMG height=21 src='http://thumb.zyjl.cn/pic1/img/20090527/20090527093501014.gif' width=45>,所以,從而;

對(duì)任何實(shí)數(shù)成立;

所以可取=,對(duì)任何、c屬于,都有成立.……10分

(2)當(dāng)時(shí),

所以當(dāng)時(shí),;當(dāng)時(shí),;

1)因此取,對(duì)任何、c屬于,都有成立.

2)當(dāng)時(shí),,解不等式得:

所以取,對(duì)任何屬于、c,都有成立.………13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)設(shè)函數(shù)f(x)=x2+|2x-a|(x∈R,a為常數(shù)).
(1)當(dāng)a=2時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)若a>-2,且函數(shù)f(x)的最小值為2,求a的值;
(3)若a≥2,不等式f(x)≥ab2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•盧灣區(qū)一模)已知函數(shù)f(x)=
x+1-tt-x
(t為常數(shù)).
(1)當(dāng)t=1時(shí),在圖中的直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質(zhì)中的兩個(gè)(只需寫兩個(gè)).
(2)設(shè)an=f(n)(n∈N*),當(dāng)t>10,且t∉N*時(shí),試判斷數(shù)列{an}的單調(diào)性并由此寫出該數(shù)列中最大項(xiàng)和最小項(xiàng)(可用[t]來(lái)表示不超過(guò)t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構(gòu)造過(guò)程中,若xi(i∈N*)在定義域中,則構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;若xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.若可用上述方法構(gòu)造出一個(gè)常數(shù)列{xn},求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•盧灣區(qū)一模)已知函數(shù)f(x)=
x+1-tt-x
(t為常數(shù)).
(1)當(dāng)t=1時(shí),在圖中的直角坐標(biāo)系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質(zhì)中的兩個(gè)(只需寫兩個(gè)).
(2)設(shè)an=f(n)(n∈N*),當(dāng)t>10,且t∉N*時(shí),試判斷數(shù)列{an}的單調(diào)性并由此寫出該數(shù)列中最大項(xiàng)和最小項(xiàng)(可用[t]來(lái)表示不超過(guò)t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構(gòu)造一個(gè)數(shù)列{xn},方法如下:對(duì)于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構(gòu)造過(guò)程中,若xi(i∈N*)在定義域中,則構(gòu)造數(shù)列的過(guò)程繼續(xù)下去;若xi不在定義域中,則構(gòu)造數(shù)列的過(guò)程停止.若取定義域中的任一值作為x1,都可以用上述方法構(gòu)造出一個(gè)無(wú)窮數(shù)列{xn},求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(理)設(shè)函數(shù)f(x)=x2+|2x-a|(x∈R,a為常數(shù)).
(1)當(dāng)a=2時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)若a>-2,且函數(shù)f(x)的最小值為2,求a的值;
(3)若a≥2,不等式f(x)≥ab2恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案