判斷下列命題的逆命題、否命題、逆否命題的真假:若cosα=
1
2
,則α=-
π
3
考點:四種命題
專題:簡易邏輯
分析:先判斷原命題為假,則其逆否命題為假,然后寫出其逆命題,判斷真假,否命題與逆命題互為逆否命題,同真假.
解答: 解:“若cosα=
1
2
,則α=-
π
3
”為假命題,則其逆否命題也是假命題,
其逆命題是“若α=-
π
3
,則cosα=
1
2
”為真命題,否命題也是真命題.
點評:本題考察命題真假判斷及四種命題,屬于基礎題目,較簡單.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

滿足M⊆{a1,a2,a3},且M∩{a1,a2,a3}={a3}的集合M的子集個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=cosxsin2x,下列結論中正確的個數(shù)是( 。
①f(x)既是奇函數(shù),又是周期函數(shù) 
②y=f(x)的圖象關于直線x=
π
2
對稱
③f(x)的最大值為
4
3
9

④y=f(x)在[-
π
6
,
π
6
]
上是增函數(shù).
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,真命題的有
 
.(只填寫真命題的序號)
①若a,b,c∈R則“ac2>bc2”是“a>b”成立的充分不必要條件;
②若橢圓
x2
16
+
y2
25
=1的兩個焦點為F1,F(xiàn)2,且弦AB過點F1,則△ABF2的周長為16;
③若命題“¬p”與命題“p或q”都是真命題,則命題q一定是真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

tanα=
1
3
,則sin2α+sinαcosα+2cos2α=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,an是Sn和1的等差中項,等差數(shù)列{bn}滿足b1+S4=0,b9=a1
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若cn=
1
(bn+16)(bn+18)
,Wn是數(shù)列{cn}的前n項和,求Wn及取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex-x-m.
(1)x>0,f(x)>0恒成立,求m的取值;
(2)當m=-1時,證明
x-lnx
ex
•f(x)>1-
1
e2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是雙曲線
x2
9
-
y2
16
=1上一點,F(xiàn)1、F2是雙曲線的左右焦點,若∠F1PF2=90°,則點P到x軸的距離是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,a1=1,且nan+1=2Sn(n∈N*),數(shù)列{bn}滿足b1=
1
2
,b2=
1
4
,對任意n∈N*,都有bn+12=bn•bn+2
(1)求數(shù)列{an}、{bn}的通項公式;
(2)令Tn=a1b1+a2b2+…anbn,若對任意的n∈N*,不等式λnTn+2bnSn>2(λn+3bn)恒成立,試求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習冊答案