【題目】為了解某校高三學(xué)生的視力情況,隨機地抽查了該校200名高三學(xué)生的視力情況,得到頻率分布直方圖,如圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最多一組學(xué)生數(shù)為a,視力在4.6到5.0之間的頻率為b,則a,b的值分別為( )
A.0.27,78B.54,0.78C.27,0.78D.54,78
【答案】B
【解析】
先根據(jù)直方圖求出前2組的頻數(shù),根據(jù)前4組成等比數(shù)列求出第3和第4組的人數(shù),從而求出后6組的人數(shù),根據(jù)直方圖可知間的頻數(shù)最大,即可求出頻率,根據(jù)等差數(shù)列的性質(zhì)可求出公差,從而求出在4.6到5.0之間的學(xué)生數(shù)為,從而求得頻率.
解:由頻率分布直方圖知組矩為0.1,間的頻數(shù)為.
間的頻數(shù)為.
又前4組的頻數(shù)成等比數(shù)列,公比為3.則第3組有18人,第4組有54人,
根據(jù)后6組頻數(shù)成等差數(shù)列,且共有人.
從而間的頻數(shù)最大,且為,即,
設(shè)公差為,則.
,
則視力在4.6到5.0之間的學(xué)生數(shù)為
故視力在4.6到5.0之間的頻率.
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,,且點在直線上;
(1)若數(shù)列滿足:,是數(shù)列的前項和,求.
(2)是否存在同時滿足以下兩個條件的三角形?如果存在,求出相應(yīng)的三角形的三邊以及,的值,如果不存在,說明理由.
條件1:三邊長是數(shù)列中的連續(xù)三項,其中;
條件2:最小角是最大角的一半.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以為頂點的五面體中,為的中點,平面,∥,,,.
(1)試在線段找一點使得平面,并證明你的結(jié)論;
(2)求證:平面;
(3)求直線與平面所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,某市為了制定合理的節(jié)水方案,對家庭用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100個家庭的月均用水量(單位:t),將數(shù)據(jù)按照,,,,分成5組,制成了如圖所示的頻率分布直方圖.
(1)記事件A:“全市家庭月均用水量不低于6t”,求的估計值;
(2)假設(shè)同組中的每個數(shù)據(jù)都用該組區(qū)間的中點值代替,求全市家庭月均用水量平均數(shù)的估計值(精確到0.01);
(3)求全市家庭月均用水量的25%分位數(shù)的估計值(精確到0.01).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】日照一中為了落實“陽光運動一小時”活動,計劃在一塊直角三角形ABC的空地上修建一個占地面積為S的矩形AMPN健身場地.如圖,點M在AC上,點N在AB上,且P點在斜邊BC上,已知∠ACB=60°且|AC|=30米,|AM|=x米,x∈[10,20].
(1)試用x表示S,并求S的取值范圍;
(2)若在矩形AMPN以外(陰影部分)鋪上草坪.已知:矩形AMPN健身場地每平方米的造價為,草坪的每平方米的造價為(k為正常數(shù)).設(shè)總造價T關(guān)于S的函數(shù)為T=f(S),試問:如何選取|AM|的長,才能使總造價T最低.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓C經(jīng)過,,()三點,M是線段上的動點,,是過點且互相垂直的兩條直線,其中交y軸于點E,交圓C于P、Q兩點.
(1)若,求直線的方程;
(2)若是使恒成立的最小正整數(shù)
①求的值; ②求三角形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進(jìn)行處理.據(jù)測算,每噴灑1個單位的去污劑,空氣中釋放的濃度(單位:毫克/立方米)隨著時間(單位:天)變化的函數(shù)關(guān)系式近似為,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應(yīng)時刻所釋放的濃度之和.由實驗知,當(dāng)空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.
(1)若一次噴灑1個單位的去污劑,則去污時間可達(dá)幾天?
(2)若第一次噴灑1個單位的去污劑,6天后再噴灑個單位的去污劑,要使接下來的4天中能夠持續(xù)有效去污,試求的最小值?(精確到)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在點處的切線方程;
(2)若存在,對任意,使得恒成立,求實數(shù)的取值范圍;
(3)已知函數(shù)區(qū)間上的最小值為1,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】銷售某種活蝦,根據(jù)以往的銷售情況,按日需量x(公斤)屬于[0,100),[100,200),[200,300),[300,400),[400,500] 進(jìn)行分組,得到如圖所示的頻率分布直方圖.這種活蝦經(jīng)銷商進(jìn)價成本為每公斤15元,當(dāng)天進(jìn)貨當(dāng)天以每公斤20元進(jìn)行銷售,當(dāng)天未售出的須全部以每公斤10元賣給冷凍庫.某水產(chǎn)品經(jīng)銷商某天購進(jìn)了300公斤這種活蝦,設(shè)當(dāng)天利潤為Y元.
(1)求Y關(guān)于x的函數(shù)關(guān)系式;
(2)結(jié)合直方圖估計利潤Y不小于300元的概率;
(3)在直方圖的日需量分組中,以各組的區(qū)間中點值代表該組的各個值,日需量落入該區(qū)間的頻率作為日需量取該區(qū)間中點值的概率,求Y的平均估計值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com