分析 A(3,2)和B(-1,4)兩點到直線mx+y+3=0的距離相等,可得$\frac{|3m+2+3|}{\sqrt{{m}^{2}+1}}$=$\frac{|-m+4+3|}{\sqrt{{m}^{2}+1}}$,化簡解出即可得出.
解答 解:∵A(3,2)和B(-1,4)兩點到直線mx+y+3=0的距離相等,
∴$\frac{|3m+2+3|}{\sqrt{{m}^{2}+1}}$=$\frac{|-m+4+3|}{\sqrt{{m}^{2}+1}}$,
化為:(2m-1)(m+6)=0,
解得m=$\frac{1}{2}$或m=-6.
故答案為:-6或$\frac{1}{2}$.
點評 本題考查了點到直線的距離公式、方程的解法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | -$\frac{{\sqrt{3}}}{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | -$\frac{{\sqrt{3}}}{2}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com