兩個正方形ABCDABEF所在的平面互相垂直,求異面直線ACBF所成角的大。
BPACDC延長線于P,則∠FBP(或補角)就是異面直線BFAC所成的角,設正方形邊長為a,在△BPF中,由余弦定理得,異面直線ACBF成60°角.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖BCDE是一個正方形,AB⊥平面BCDE,則圖中互相垂直的平面共有(    )
A.4組B.5組C.6組D.7組

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,在三棱柱ABC—A1B1C1中,M、N分別是BC和A1B1的中點.
求證:MN∥平面AA1C1.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知正方形,
平面,(1)求證:;  (2)求證:
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖02,在長方體ABCDA1B1C1D1中,P、Q、R分別是棱AA1、BB1、BC上的點,PQAB,C1QPR,求證:∠D1QR=90°.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于平面和共面的直線m、n,下列命題中真命題是 (        )
A.若m,mn,則nB.若m,n,則mn
C.若m,n,則mnD.若mn所成的角相等,則nm

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方體ABCD-A1B1C1D1中,點E在棱CD上.
(1)求證:EB1⊥AD1;
(2)若E是CD中點,求EB1與平面AD1E所成的角;
(3)設M在BB1上,且
BM
MB1
=
2
3
,是否存在點E,使平面AD1E⊥平面AME,若存在,指出點E的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面為菱形且∠DAB=60°,PA⊥底面ABCD,AB=2,PA=2
3
,E為PC的中點.
(1)求直線DE與平面PAC所成角的大小;
(2)求C點到平面PBD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體中,若的中點,則直線垂直于(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案