【題目】已知函數(shù)f(x)=ex(sinx﹣ax2+2a﹣e),其中a∈R,e=2.71818…為自然數(shù)的底數(shù).
(1)當a=0時,討論函數(shù)f(x)的單調性;
(2)當 ≤a≤1時,求證:對任意的x∈[0,+∞),f(x)<0.

【答案】
(1)解:當a=0時,f(x)=ex(sinx﹣e),

則f′(x)=ex(sinx﹣e)+excosx=ex(sinx﹣e+cosx),

∵sinx+cosx= sin(x+ )≤ <e,

∴sinx+cosx﹣e<0

故f′(x)<0

則f(x)在R上單調遞減


(2)解:當x≥0時,y=ex≥1,

要證明對任意的x∈[0,+∞),f(x)<0.

則只需要證明對任意的x∈[0,+∞),sinx﹣ax2+2a﹣e<0.

設g(a)=sinx﹣ax2+2a﹣e=(﹣x2+2)a+sinx﹣e,

看作以a為變量的一次函數(shù),

要使sinx﹣ax2+2a﹣e<0,

,即

∵sinx+1﹣e<0恒成立,∴①恒成立,

對于②,令h(x)=sinx﹣x2+2﹣e,

則h′(x)=cosx﹣2x,

設x=t時,h′(x)=0,即cost﹣2t=0.

∴t= ,sint<sin ,

∴h(x)在(0,t)上,h′(x)>0,h(x)單調遞增,在(t,+∞)上,h′(x)<0,h(x)單調遞減,

則當x=t時,函數(shù)h(x)取得最大值h(t)=sint﹣t2+2﹣e=sint﹣( 2+2﹣e

=sint﹣ +2﹣e= sin2t+sint+ ﹣e=( +1)2+ ﹣e≤( 2+ ﹣e= ﹣e<0,

故④式成立,

綜上對任意的x∈[0,+∞),f(x)<0


【解析】(1)求函數(shù)的導數(shù),利用函數(shù)單調性和導數(shù)之間的關系進行討論即可.(2)對任意的x∈[0,+∞),f(x)<0轉化為證明對任意的x∈[0,+∞),sinx﹣ax2+2a﹣e<0,即可,構造函數(shù),求函數(shù)的導數(shù),利用導數(shù)進行研究即可.
【考點精析】掌握利用導數(shù)研究函數(shù)的單調性是解答本題的根本,需要知道一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了了解高中生的藝術素養(yǎng),從學校隨機選取男,女同學各50人進行研究,對這100名學生在音樂、美術、戲劇、舞蹈等多個藝術項目進行多方位的素質測評,并把調查結果轉化為個人的素養(yǎng)指標,制成下圖,其中“*”表示男同學,“+”表示女同學.

,則認定該同學為“初級水平”,若,則認定該同學為“中級水平”,若,則認定該同學為“高級水平”;若,則認定該同學為“具備一定藝術發(fā)展?jié)撡|”,否則為“不具備明顯藝術發(fā)展?jié)撡|”.

(I)從50名女同學的中隨機選出一名,求該同學為“初級水平”的概率;

(Ⅱ)從男同學所有“不具備明顯藝術發(fā)展?jié)撡|的中級或高級水平”中任選2名,求選出的2名均為“高級水平”的概率;

(Ⅲ)試比較這100名同學中,男、女生指標的方差的大。ㄖ恍鑼懗鼋Y論).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD與正三角形BCE的邊長均為2,且平面ABCD⊥平面BCE,F(xiàn)D⊥平面ABCD,
(I)求證:EF∥平面ABCD;
(II)求證:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為實數(shù))的圖像在點處的切線方程為.

(1)求實數(shù)的值及函數(shù)的單調區(qū)間;

(2)設函數(shù),證明時, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓的離心率為,焦點到相應準線的距離為,分別為橢圓的左頂點和下頂點,為橢圓上位于第一象限內的一點,軸于點,軸于點.

(1)求橢圓的標準方程;

(2)若,求的值;

(3)求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD為菱形,GACBD交點,,

(I)證明:平面平面

(II)若, 三棱錐的體積為,求該三棱錐的側面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】不等式組 的解集記為D,命題p:(x,y)∈D,x+2y≥5,命題q:(x,y)∈D,2x﹣y<2,則下列命題為真命題的是(
A.p
B.q
C.p∨(q)
D.(p)∨q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓的圓心在軸上,且經(jīng)過點,

(Ⅰ)求線段AB的垂直平分線方程;

(Ⅱ)求圓的標準方程;

(Ⅲ)過點的直線與圓相交于、兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,共享單車已經(jīng)悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設置了用戶評價反饋系統(tǒng),以了解用戶對車輛狀況和優(yōu)惠活動的評價.現(xiàn)從評價系統(tǒng)中選出條較為詳細的評價信息進行統(tǒng)計,車輛狀況的優(yōu)惠活動評價的列聯(lián)表如下:

對優(yōu)惠活動好評

對優(yōu)惠活動不滿意

合計

對車輛狀況好評

對車輛狀況不滿意

合計

(1)能否在犯錯誤的概率不超過的前提下認為優(yōu)惠活動好評與車輛狀況好評之間有關系?

(2)為了回饋用戶,公司通過向用戶隨機派送每張面額為元,元,元的 三種騎行券.用戶每次使用掃碼用車后,都可獲得一張騎行券.用戶騎行一次獲得元券,獲得元券的概率分別是,,且各次獲取騎行券的結果相互獨立.若某用戶一天使用了兩次該公司的共享單車,記該用戶當天獲得的騎行券面額之和為,求隨機變量的分布列和數(shù)學期望.

參考數(shù)據(jù):

參考公式:,其中.

查看答案和解析>>

同步練習冊答案