已知在正方體ABCD-A′B′C′D′中,E是棱BB′中點,G是DD′中點,F(xiàn)是BC上一點且FB=
1
4
BC,則GB與EF所成的角為
 
考點:異面直線及其所成的角
專題:空間角
分析:建立空間坐標系,明確GB,EF對應(yīng)的向量,利用向量的數(shù)量積求夾角.
解答: 解:如圖
建立空間直角坐標系,
因為在正方體ABCD-A′B′C′D′中,E是棱BB′中點,G是DD′中點,F(xiàn)是BC上一點且FB=
1
4
BC,
設(shè)正方體棱長為4,則B(0,0,0),G(4,4,2),E(0,0,2),F(xiàn)(0,1,0),
所以
BG
=(4,4,2),
FE
=(0,-1,2),
所以cos<
BG
,
FE
>=
BG
FE
|
BG
||
FE
|
=0
所以GB與EF所成的角為90°.
點評:本題考查了異面直線所成的角的求法;在以正方體為載體的空間角的求法常常采用建立坐標系,利用向量的方法來求,體現(xiàn)了向量的工具性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=
1
3
x3-4x+
1
3
的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點E(4cosα,0),F(xiàn)(0,4sinα)(α∈R)為平面直角坐標系xOy中的點,點P為線段EF的中點,當α變化時,點P形成的軌跡π與x軸交于點A,B(A點在左側(cè)),與y軸正半軸交與點C.
(1)求P點的軌跡π的方程;
(2)設(shè)點M是軌跡π上任意一點(不在坐標軸上),直線CM交x軸于點D⊥,直線BM交直線AC于點N.
①若D點坐標為(2
3
,0),求線段CM的長;
②求證:2kND-kMB為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x2-bx+c滿足f(1+x)=f(1-x)且f(0)=3,則二次函數(shù)的解析式為f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C1:(x+1)2+y2=1,圓C2:(x-1)2+(y-4)2=1,動圓C平分C1,C2的周長,求動圓C圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次象棋比賽的決賽在甲乙兩名棋手之間舉行,比賽采用積分制,比賽規(guī)則規(guī)定贏一局得2分,平一局得1分,輸一局得0分,根據(jù)以往經(jīng)驗,每局甲贏的概率為
1
2
,乙贏的概率為
1
3
,且每局比賽輸贏互不影響.若甲第n局的得分記為an,令Sn=a1+a2+…+an
(Ⅰ)求S3=5的概率;
(Ⅱ)若規(guī)定:當其中一方的積分達到或超過4分時,比賽結(jié)束,否則,繼續(xù)進行.設(shè)隨機變量ξ表示此次比賽共進行的局數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+mx(m為常數(shù))的對稱軸方程為x=-1,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知⊙C的圓心C(2,2),過原點O的直線y=kx與圓C相交于P,Q兩點,且
OP
OQ
=6,則圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=ex+ae-x(a∈R,x∈R).
(1)討論函數(shù)g(x)=xf(x)的奇偶性;
(2)若g(x)是偶函數(shù),解不等式f(x2-2)≤f(x).

查看答案和解析>>

同步練習(xí)冊答案