已知函數(shù)f(x)=
x
-
1
2
alnx,a∈R.
(Ⅰ)當f(x)存在最小值時,求其最小值φ(a)的解析式;
(Ⅱ)對(Ⅰ)中的φ(a),
(。┊攁∈(0,+∞)時,證明:φ(a)≤1;
(ⅱ)當a>0,b>0時,證明:φ′(
a+b
2
)≤
φ′(a)+φ′(b)
2
≤φ′(
2ab
a+b
).
分析:(Ⅰ)由條件知,f′(x)=
1
2
x
-
a
2x
=
x
-a
2x
(x>0),然后討論a的正負,利用導數(shù)研究函數(shù)的單調性,從而求出求出f(x)的最小值;
(Ⅱ)由(Ⅰ)知φ′(a)=-lna,從而分別求出φ′(
a+b
2
)、
φ′(a)+φ′(b)
2
、φ′(
2ab
a+b
)的值,然后利用基本不等式可得結論.
解答:解:(Ⅰ)求導數(shù),得f′(x)=
1
2
x
-
a
2x
=
x
-a
2x
(x>0).
(1)當a≤0時,f′(x)=
x
-a
2x
>0,f(x)在(0,+∞)上是增函數(shù),無最小值.
(2)當a>0時,令f′(x)=0,解得x=a2
當0<x<a2時,f′(x)<0,∴f(x)在(0,a2)上是減函數(shù);
當x>a2時,f′(x)>0,∴f(x)在(a2,+∞)上是增函數(shù).
∴f(x)在x=a2處取得最小值f(a2)=a-alna.
故f(x)的最小值φ(a)的解析式為φ(a)=a-alna(a>0).…(6分)
(Ⅱ)由(Ⅰ),知φ(a)=a-alna(a>0),
求導數(shù),得φ′(a)=-lna.
(。┝瞀铡洌╝)=0,解得a=1.
當0<a<1時,φ′(a)>0,∴φ(a)在(0,1)上是增函數(shù);
當a>1時,φ′(a)<0,∴φ(a)在(1,+∞)上是減函數(shù).
∴φ(a)在a=1處取得最大值φ(1)=1.
故當a∈(0,+∞)時,總有φ(a)≤1.…(10分)
(ⅱ)當a>0,b>0時,
φ′(a)+φ′(b)
2
=-
lna+lnb
2
=-ln
ab
,①
φ′(
a+b
2
)=-ln(
a+b
2
)≤-ln
ab
,②
φ′(
2ab
a+b
)=-ln(
2ab
a+b
)≥-ln
2ab
2
ab
=-ln
ab
,③
由①②③,得φ′(
a+b
2
)≤
φ′(a)+φ′(b)
2
≤φ′(
2ab
a+b
).…(14分)
點評:本題主要考查了利用導數(shù)研究函數(shù)的單調性和最值,同時考查了基本不等式的應用,以及計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案