19.古有“紅綠豆分”題,農(nóng)民收獲綠豆1000kg,驗(yàn)得綠豆內(nèi)夾紅豆(大小相當(dāng)),抽樣取綠豆一把,數(shù)得400粒內(nèi)夾紅豆20粒,則這批綠豆內(nèi)夾紅豆約為50kg.(用數(shù)字作答)

分析 求出這批綠豆內(nèi)夾紅豆的概率,即可得出結(jié)論.

解答 解:由題意,這批綠豆內(nèi)夾紅豆的概率為$\frac{20}{400}$=$\frac{1}{20}$,
∴這批綠豆內(nèi)夾紅豆約為1000×$\frac{1}{20}$=50kg.
故答案為50.

點(diǎn)評 本題考查概率的計(jì)算,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在區(qū)間[0,2π]上任取一個實(shí)數(shù)α,則該數(shù)是方程$\frac{sinα}{|sinα|}$+$\frac{cosα}{|cosα|}$+$\frac{tanα}{|tanα|}$=-1的解的概率為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}xlnx-a{x^2},x≥1\\{a^x},x<1\end{array}$是減函數(shù),則a的取值范圍是( 。
A.$(0,\frac{1}{2}]$B.(0,1)C.$(\frac{1}{2},1)$D.$[\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,PA⊥平面ABCD,AB=2,PA=$\frac{{2\sqrt{3}}}{3}$,E為BC中點(diǎn),F(xiàn)在棱PD上,AF⊥PD,點(diǎn)B到平面AEF的距離為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2+$\frac{|x|-x}{3}$(-3<x≤3).
(1)用分段函數(shù)的形式表示該函數(shù);
(2)畫出該函數(shù)的圖象;
(3)寫出該函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=$\frac{{x}^{2}+5}{\sqrt{{x}^{2}+4}}$(x∈R)的最小值為(  )
A.2B.3C.2$\sqrt{2}$D.2.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y∈[0,π],則cos(x+y)+cosx+2cosy的最小值為-2.25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.解關(guān)于x的不等式ax2-(a+1)x+1>0(a為常數(shù)且a≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)f(x)=$\left\{{\begin{array}{l}{-2{e^{x-2}},x≥2}\\{{{log}_3}({{x^2}-1}),x<2}\end{array}}$,則f(f(2))的值為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案