曲線:y=
x3
3
-x2
+2x-1的切線的斜率的最小值是
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),利用配方法求得切線的斜率的最小值.
解答: 解:由y=
x3
3
-x2
+2x-1,得
y′=x2-2x+2=(x-1)2+1,
∵x∈R,
∴當(dāng)x=1時(shí),y′min=1.
故答案為:1.
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,過曲線上某點(diǎn)處的切線的斜率,就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
,
b
滿足|
a
+
b
|=
15
,|
a
-
b
|=
11
,則
a
b
=(  )
A、1B、2C、3D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:角θ與φ都是任意角,若滿足θ+φ=90°,則稱θ與φ“廣義互余”,已知sin(π+α)=-
1
4
,下列角β中,可能與角α“廣義互余”的是
 

①sinβ=
15
4
;
②cos(π+β)=
1
4
;
③tanβ=
15
;
④tanβ=
15
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的部分圖象如圖所示,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-
π
2
<α<β<
π
2
,則
α-β
2
的范圍是(  )
A、(-
π
2
π
2
)
B、(-
π
2
,π)
C、(0,
π
2
)
D、(-
π
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a10=30,a20=50,
(1)求通項(xiàng)an
(2)若Sn=80,求n
(3)設(shè)數(shù)列{bn}滿足log2bn=an-12,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某知名保健品企業(yè)新研發(fā)了一種健康飲品,已知每天生產(chǎn)該種飲品最多不超過40千瓶,最少1千瓶,經(jīng)檢測在生產(chǎn)過程中該飲品的正品率P與每日生產(chǎn)產(chǎn)品瓶數(shù)x(x∈N*,單位:千瓶)間的關(guān)系為P=
4200-x2
4500
,每生產(chǎn)一瓶飲品盈利4元,每出現(xiàn)一瓶次品虧損2元(注:正品率=飲品的正品瓶數(shù)÷飲品總瓶數(shù)×100%)
(Ⅰ)將日利潤y(元)表示成日產(chǎn)量x的函數(shù);
(Ⅱ)求該種飲品日利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x(萬元)4235
銷售額y(萬元)49263954
根據(jù)上表可得回歸方程
y
=
b
x+
a
中的
b
為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為6萬元時(shí)銷售額為( 。
A、63.6萬元
B、67.7萬元
C、65.5萬元
D、72.0萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

偶函數(shù)f(x)滿足f(x-1)=f(x+1),且在x∈[0,1]時(shí),f(x)=-x+1,則關(guān)于x的方程f(x)=(
1
10
x,在x∈[1,3]上解的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案