20.若“0<x<1”是“(x-a)[x-(a+2)]<0”的充分不必要條件,則實(shí)數(shù)a的取值范圍是(  )
A.[-1,0]B.(-1,0)C.(-∞,0]∪[1,+∞)D.(-∞,-1)∪(0,+∞)

分析 利用充分不必要條件及其不等式的解法即可得出.

解答 解:∵“0<x<1”是“(x-a)[x-(a+2)]<0”的充分不必要條件,
∴(0,1)?(a,a+2),
∴0≥a,且a+2≥1,解得-1≤a≤0.
故選:A.

點(diǎn)評(píng) 本題考查了集合與不等式的解法、充分不必要條件,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.曲線f(x)=$\frac{lnx}{x}$在x=e處的切線方程為(  )
A.y=eB.y=x-e+$\frac{1}{e}$C.y=xD.y=$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在四棱錐P-ABCD中,底面是正方形,側(cè)棱PD⊥面ABCD,E是PC中點(diǎn).
(1)證明PA∥面EDB;
(2)求異面直線PC與AD能成角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知y=$\frac{1}{3}{x^3}+b{x^2}$+(b+2)x+3是R上的單調(diào)函數(shù),則b的取值范圍是( 。
A.-1≤b≤2B.b≤-1或b≥2C.-1<b<2D.b<-1或b>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知F1、F2是橢圓$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1的焦點(diǎn),點(diǎn)P在橢圓上,若∠F1PF2=$\frac{π}{3}$,則△F1PF2的面積為$\frac{64\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知x,y都是實(shí)數(shù),命題p:|x|<3;命題q:x2-2x-3<0,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.集合A={x|x2-5x+4≤0},B={x||2x-3|≤3},則A∩B=(  )
A.{x|0<x≤3}B.{x|1≤x≤3}C.{x|0≤x≤4}D.{x|1<x≤4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P(x,y)與定點(diǎn)F(-1,0)的距離和它到定直線x=-2的距離之比是$\frac{\sqrt{2}}{2}$.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)F作曲線C的不垂直于y軸的弦AB,M為AB的中點(diǎn),直線OM與曲線C交于P,Q兩點(diǎn),求四邊形APBQ面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知實(shí)數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{x≥-3}\end{array}}\right.$,則z=x+3y+7的最大值為( 。
A.-5B.11C.15D.19

查看答案和解析>>

同步練習(xí)冊(cè)答案