17.函數(shù)y=cos2x-4cosx+1的最小值是(  )
A.-3B.-2C.5D.6

分析 利用查余弦函數(shù)的值域,二次函數(shù)的性質(zhì),求得y的最小值.

解答 解:∵函數(shù)y=cos2x-4cosx+1=(cox-2)2-3,且cosx∈[-1,1],故當(dāng)cosx=1時(shí),函數(shù)y取得最小值為-2,
故選:B.

點(diǎn)評(píng) 本題主要考查余弦函數(shù)的值域,二次函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,則A的大小為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=sinωx+$\sqrt{3}cosωx({ω>0})$,當(dāng)f(x1)=f(x2)=2時(shí),|x1-x2|的最小值為2,給出下列結(jié)論,其中所有正確結(jié)論的個(gè)數(shù)為( 。
①f(0)=$\frac{π}{3}$;  
②當(dāng)x∈(0,1)時(shí),函數(shù)f(x)的最大值為2;  
③函數(shù)$f({x+\frac{1}{6}})$的圖象關(guān)于y軸對(duì)稱;  
④函數(shù)f(x)在(-1,0)上是增函數(shù).
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{1}{2}$,左、右焦點(diǎn)為F1,F(xiàn)2,點(diǎn)M為橢圓C上的任意一點(diǎn),$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}$的最小值為2.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)已知橢圓C的左、右頂點(diǎn)為A,B,點(diǎn)D(a,t)為第一象限內(nèi)的點(diǎn),過(guò)F2作以BD為直徑的圓的切線交直線AD于點(diǎn)P,求證:點(diǎn)P在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知a,b∈R,且a>b,求證:2a+$\frac{1}{{a}^{2}-2ab+^{2}}$≥2b+3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知角α的終邊落在直線y=-3x上,則cos(π+2α)的值是(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.$±\frac{3}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.對(duì)于實(shí)數(shù)m,n,定義一種運(yùn)算:$m*n=\left\{{\begin{array}{l}{m,m≥n}\\{n,m<n}\end{array}}\right.$,已知函數(shù)f(x)=a*ax,其中0<a<1,若f(t-1)>f(4t),則實(shí)數(shù)t的取值范圍是(-$\frac{1}{3}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知x、y滿足$\left\{\begin{array}{l}{y≤x}\\{x+2y≤4}\\{y≥-2}\end{array}\right.$,求:
(1)t=x2+y2+2x-2y+2的最小值;
(2)t=|x-y+1|的最大值;
(3)t=$\frac{y+3}{x-1}$的取值范圍;
(4)t=xy的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.某學(xué)校記者團(tuán)由理科組和文科組構(gòu)成,具體數(shù)據(jù)如表所示:
組別理科文科
性別男生女生男生女生
人數(shù)3331
學(xué)校準(zhǔn)備從中選4人到社區(qū)舉行的大型公益活動(dòng)中進(jìn)行采訪,每選出一名男生,給其所在小組記1分,每選出一名女生,給其所在小組記2分,若要求被選出的4人中理科組、文科組的學(xué)生都有.
(Ⅰ)求理科組恰好記4分的概率;
(Ⅱ)設(shè)文科組男生被選出的人數(shù)為X,求隨機(jī)變量的分布列X和數(shù)學(xué)期望E(x).

查看答案和解析>>

同步練習(xí)冊(cè)答案