【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系,現(xiàn)在從4月份的30天中隨機(jī)挑選了5天進(jìn)行研究,且分別記錄了每天晝夜溫差與每天100顆種子浸泡后的發(fā)芽率,得到如下表格:
(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25” 的概率;
(2)從這5天中任選2天,若選取的是4月1日與4月30日的兩組數(shù)據(jù),請(qǐng)根據(jù)這5天中的另3天的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得到的線性回歸方程是否可靠?
參考公式: , .
【答案】(1) .(2) =x-3. (3)是可靠的.
【解析】試題分析:
(1)結(jié)合題意列出所有可能的事件,利用古典概型公式可得:事件“均不小于25” 的概率是;
(2)首先求得樣本中心點(diǎn)為,結(jié)合線性回歸方程系數(shù)計(jì)算公式可得回歸方程為;
(3)結(jié)合回歸方程的預(yù)測作用計(jì)算可得(2)中所得到的線性回歸方程是可靠的.
試題解析:
(1)所有的基本事件為
(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),
(30,26),(30,16),(26,16),共10個(gè).
設(shè)“m,n均不小于25”為事件A,則事件A包含的基本事件為
(25,30),(25,26),(30,26),共3個(gè).
所以P(A)=.
(2)由數(shù)據(jù)得,另3天的平均數(shù), ,
法一: ,
法二: ,
所以=27-×12=-3,
所以y關(guān)于x的線性回歸方程為=x-3.
(3)依題意得,當(dāng)x=10時(shí),=22,|22-23|<2;當(dāng)x=8時(shí),=17,|17-16|<2,
所以(2)中所得到的線性回歸方程是可靠的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—5: 不等式選講
已知函數(shù)f(x)= 的定義域?yàn)?/span>R.
(Ⅰ)求實(shí)數(shù)m的取值范圍;
(Ⅱ)若m的最大值為n,當(dāng)正數(shù)a,b滿足 =n時(shí),求7a+4b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市擬興建九座高架橋,新聞媒體對(duì)此進(jìn)行了問卷調(diào)查,在所有參與調(diào)查的市民中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取部分市民做進(jìn)一步調(diào)研(不同態(tài)度的群體中亦按年齡分層抽樣),已知從“保留”態(tài)度的人中抽取了19人,則在“支持”態(tài)度的群體中,年齡在40歲以下(含40歲)的人有多少被抽;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取6人做進(jìn)一步的調(diào)研,將此6人看作一個(gè)總體,在這6人中任意選取2人,求至少有1人在40歲以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓: 的離心率為,過其右焦點(diǎn)與長軸垂直的直線與橢圓在第一象限相交于點(diǎn), .
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左頂點(diǎn)為,右頂點(diǎn)為,點(diǎn)是橢圓上的動(dòng)點(diǎn),且點(diǎn)與點(diǎn), 不重合,直線與直線相交于點(diǎn),直線與直線相交于點(diǎn),求證:以線段為直徑的圓恒過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在, , 上的奇函數(shù),當(dāng), 時(shí), ().
(Ⅰ)求的解析式;
(Ⅱ)設(shè), , ,求證:當(dāng)時(shí), 恒成立;
(Ⅲ)是否存在實(shí)數(shù),使得當(dāng), 時(shí), 的最小值是?如果存在,
求出實(shí)數(shù)的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)新農(nóng)村建設(shè),某村計(jì)劃對(duì)現(xiàn)有舊水渠進(jìn)行改造,已知舊水渠的橫斷面是一段拋物線弧,頂點(diǎn)為水渠最底端(如圖),渠寬為4m,渠深為2m.
(1)考慮到農(nóng)村耕地面積的減少,為節(jié)約水資源,要減少水渠的過水量,在原水渠內(nèi)填土,使其成為橫斷面為等腰梯形的新水渠(如圖(1)建立平面直角坐標(biāo)系),新水渠底面與地面平行(不改變渠寬),問新水渠底寬為多少時(shí),所填土的土方量最少?
(2)考慮到新建果園的灌溉需求,要增大水渠的過水量,現(xiàn)把舊水渠改挖(不能填土)成橫斷面為等腰梯形的新水渠(如圖(2)建立平面直角坐標(biāo)系),使水渠的底面與地面平行(不改變渠深),要使所挖土的土方量最少,請(qǐng)你設(shè)計(jì)水渠改挖后的底寬,并求出這個(gè)底寬.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國經(jīng)濟(jì)的快速發(fā)展,民用汽車的保有量也迅速增長.機(jī)動(dòng)車保有量的發(fā)展影響到環(huán)境質(zhì)量、交通安全、道路建設(shè)等諸多方面.在我國,尤其是大中型城市,機(jī)動(dòng)車已成為城市空氣污染的重要來源.因此,合理預(yù)測機(jī)動(dòng)車保有量是未來進(jìn)行機(jī)動(dòng)車污染防治規(guī)劃、道路發(fā)展規(guī)劃等的重要前提.從2012年到2016年,根據(jù)“云南省某市國民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)”中公布的數(shù)據(jù),該市機(jī)動(dòng)車保有量數(shù)據(jù)如表所示.
年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代碼 | 1 | 2 | 3 | 4 | 5 |
機(jī)動(dòng)車保有量(萬輛) | 169 | 181 | 196 | 215 | 230 |
(1)在圖所給的坐標(biāo)系中作出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)建立機(jī)動(dòng)車保有量關(guān)于年份代碼的回歸方程;
(3)按照當(dāng)前的變化趨勢,預(yù)測2017年該市機(jī)動(dòng)車保有量.
附注:回歸直線方程中的斜率和截距的最小二乘估計(jì)公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ()的離心率為,右焦點(diǎn)為,斜率為1的直線與橢圓交于、兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.
(1)求橢圓的方程;
(2)求△的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列, , , 滿足,且當(dāng)時(shí), ,令.
(Ⅰ)寫出的所有可能的值.
(Ⅱ)求的最大值.
(Ⅲ)是否存在數(shù)列,使得?若存在,求出數(shù)列;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com