已知P為拋物線y2=4x上的任意一點(diǎn),記點(diǎn)P到直線x=-1的距離為d,對(duì)于給定點(diǎn)A(4,5),則|PA|+d的最小值為
34
34
分析:過P作PB垂直于直線x=-1,垂足為B,根據(jù)拋物線的定義得:|PA|+d=|PA|+|PB|=|PA|+|PF|.利用三角形兩邊之和大于第三邊,可得當(dāng)且僅當(dāng)P、A、F三點(diǎn)共線時(shí),|PA|+d達(dá)到最小值,因此可用兩點(diǎn)的距離公式求出|PA|+d的最小值.
解答:解:過P作PB垂直于直線x=-1,垂足為B
∵拋物線方程為y2=4x,
∴2p=4,得
p
2
=1,可得焦點(diǎn)F(1,0),且直線x=-1是拋物線的準(zhǔn)線,
因此,|PA|+d=|PA|+|PB|=|PA|+|PF|
∵|PA|+|PF|≥|AF|
∴當(dāng)且僅當(dāng)P、A、F三點(diǎn)共線時(shí),|PA|+|PF|達(dá)到最小值
因此,|PA|+d的最小值為|AF|=
(4-1)2+(5-0)2
=
34

故答案為:
34
點(diǎn)評(píng):本題給出定點(diǎn)A和拋物線上動(dòng)點(diǎn)P,求P到A點(diǎn)與P到拋物線準(zhǔn)線距離之和的最小值,著重考查了拋物線的幾何性質(zhì)和兩點(diǎn)之間的距離公式等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知P為拋物線y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線的準(zhǔn)線距離之和的最小值是(  )
A、2
5
-1
B、2
5
-2
C、
17
-1
D、
17
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為拋物線y2=4(x-1)上動(dòng)點(diǎn),PA⊥y軸交y于A,點(diǎn)B在y軸上,且B點(diǎn)分向量
OA
的比為1:2,求BP中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為拋物線y2=4x的焦點(diǎn),過P的直線l與拋物線交與A、B兩點(diǎn),若點(diǎn)Q在直線l上,且滿足AP•QB=AQ•PB,則點(diǎn)Q總在定直線x=-1上.試猜測(cè)如果點(diǎn)P為橢圓
x2
16
+
y2
9
=1
的左焦點(diǎn),過P的直線l與橢圓交與A、B兩點(diǎn),點(diǎn)Q在直線l上,且滿足AP•QB=AQ•PB,則點(diǎn)Q總在定直線
x=-
16
7
7
x=-
16
7
7
上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為拋物線y2=4x上一個(gè)動(dòng)點(diǎn),Q為圓x2+(y-4)2=1上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到拋物線的準(zhǔn)線距離之和的最小值是
17
-1
17
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為拋物線y2=2x上任一點(diǎn),則P到直線x-y+5=0距離的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案