如圖,直三棱柱(側(cè)棱垂直于底面的棱柱),底面中    ,棱,分別為的中點.

(1)求 >的值;
(2)求證:
(3)求.

(1);(2)只需證;(3)。

解析試題分析:以C為原點,CA、CB、CC1所在的直線分別為軸、軸、軸,建立如圖所示的坐標(biāo)系                     
(1)依題意得,

 
 ,  
>= 
(2) 依題意得 ∴,
,,


,    

      (Ⅲ)
考點:異面直線所成的角;線面垂直的判定定理;點到平面的距離。
點評:①本題主要考查了空間的線面垂直的證明以及異面直線所成的角、點到平面的距離,充分考查了學(xué)生的邏輯推理能力,空間想象力,以及識圖能力。②我們要熟練掌握正棱柱、直棱柱的結(jié)構(gòu)特征。正棱柱:底面是正多邊形,側(cè)棱垂直底面。直棱柱:側(cè)棱垂直底面。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,EPC的中點,作PB于點F

(I) 證明: PA∥平面EDB;
(II) 證明:PB⊥平面EFD

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)如圖,在多面體ABCDEF中,底面ABCD是 平行四邊形,AB=2EF,EFAB,,HBC的中點.求證:FH∥平面EDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖所示,四棱錐P-ABCD的底面ABCD是邊長為1的菱形,BCD=60,E是CD的中點,PA底面ABCD,PA=2.

(1)證明:平面PBE平面PAB;
(2)求PC與平面PAB所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
在四棱錐中,,平面,的中點,

(Ⅰ)求四棱錐的體積;
(Ⅱ)若的中點,求證:平面平面;
(Ⅲ)求二面角的大小。.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在正三棱柱ABC-A1B1C1中,若BB1=1,AB=,求AB1與C1B所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,AD=PA=2,,E、F分別是AB、PD的中點.

(Ⅰ)求證:平面PCE 平面PCD;
(Ⅱ)求四面體PEFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在棱長為1的正方體中.

(Ⅰ)求異面直線所成的角;
(Ⅱ)求證平面⊥平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個多面體的直觀圖和三視圖如下:(其中分別是中點)

(1)求證:平面;
(2)求多面體的體積.

查看答案和解析>>

同步練習(xí)冊答案