選考題
請(qǐng)從下列三道題當(dāng)中任選一題作答,如果多做,則按所做的第一題計(jì)分,請(qǐng)?jiān)诖痤}卷上注明題號(hào).
22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當(dāng)AC=1,BC=2時(shí),求AD的長(zhǎng).
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與半圓C上的弧AP的長(zhǎng)度均為
π
3

(1)求以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo);
(2)求直線AM的參數(shù)方程.
分析:22-1(1)原不等式等價(jià)于
x<
1
2
9x≥3
1
2
≤x≤
3
2
1≤5x
x>
3
2
x≥-5
解之即可;
(2)依題意,f(x)+m=0在R上無(wú)解,可求得f(x)min,令-m=f(x)<f(x)min即可.
22-2:(1)連接DE,由△BDE∽△BCA可證得結(jié)論;
(2)設(shè)AD=t,根據(jù)割線定理得 BD•BA=BE•BC,整理得(2-t)•2=2t•2,從而解得答案; 
23-3:(1)由已知,點(diǎn)M的極角為
π
3
,極徑等于
π
3
,從而可求得點(diǎn)M的極坐標(biāo);
(2)由點(diǎn)M的直角坐標(biāo)為(
π
6
,
3
π
6
),A(1,0,即可求得直線AM的參數(shù)方程.
解答:22-1 解:(1)原不等式等價(jià)于:于
x<
1
2
9x≥3
1
2
≤x≤
3
2
1≤5x
x>
3
2
x≥-5
,
因此不等式的解集為{x|x≥
1
3
}.
(2)由于g(x)=
1
f(x)+m
的定義域?yàn)镽
∴f(x)+m=0在R上無(wú)解
又f(x)=|2x-1|+|2x-3|≥|2x-1-2x+3|=2即f(x)min=2
∴-m<2,即m>-2
22-2證明:(1)連接DE,
∵ACDE為圓的內(nèi)接四邊形.
∴∠BDE=∠BCA,
又∠DBE=∠CBA,
∴△BDE∽△BCA 即
BE
BA
=
DE
CA
,
而 AB=2AC,
∴BE=2DE.
又CD是∠ACB的平分線,
∴AD=DE 從而B(niǎo)E=2AD.
(2)由條件得 AB=2AC=2
設(shè)AD=t,根據(jù)割線定理得 BD•BA=BE•BC,即(AB-AD)•BA=2AD•2
∴(2-t)•2=2t•2,解得t=
2
3
,即AD=
2
3

22-3解:(1)由已知,點(diǎn)M的極角為
π
3
,極徑等于
π
3
,所以M(
π
3
,
π
3
).
(2)點(diǎn)M的直角坐標(biāo)為(
π
6
3
π
6
),A(1,0),故直線AM的參數(shù)方程為
x=1+(
π
6
-1)t
y=
3
π
6
t
(t為參數(shù))
點(diǎn)評(píng):本題考查絕對(duì)值不等式的解法,考查與圓有關(guān)的比例線段,考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,綜合性強(qiáng),難度大,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年云南省部分名校高三第一次統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題

四.選考題(從下列三道解答題中任選一題作答,作答時(shí),請(qǐng)?jiān)诖痤}卷上注明題號(hào);滿分10分.)

22.(本小題滿分10分)選修4—1:幾何證明選講

如圖,是⊙的直徑,是弦,∠BAC的平分線

交⊙,延長(zhǎng)線于點(diǎn),于點(diǎn)

(Ⅰ)求證:是⊙的切線;

(Ⅱ)若,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省蘭州一中高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

選考題
請(qǐng)從下列三道題當(dāng)中任選一題作答,如果多做,則按所做的第一題計(jì)分,請(qǐng)?jiān)诖痤}卷上注明題號(hào).
22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當(dāng)AC=1,BC=2時(shí),求AD的長(zhǎng).
22-3已知P為半圓上的點(diǎn),點(diǎn)A的坐標(biāo)為(1,0),O為坐標(biāo)原點(diǎn),點(diǎn)M在射線OP上,線段OM與半圓C上的弧AP的長(zhǎng)度均為
(1)求以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)M的極坐標(biāo);
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案